作者|ANIRUDDHA BHANDARI 編譯|VK 來源|Analytics Vidhya AUC-ROC曲線 你已經建立了你的機器學習模型-那么接下來呢?你需要對它進行評估,並驗證它有多好(或有多壞),這樣你就可以決定是否實現它。這時就可以引入AUC-ROC曲線了。 這個名字可能有 ...
from sklearn.metrics import roc curve,auc from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt from sklearn.model selection import train test split x train,y train,x tes ...
2019-02-21 13:48 0 3021 推薦指數:
作者|ANIRUDDHA BHANDARI 編譯|VK 來源|Analytics Vidhya AUC-ROC曲線 你已經建立了你的機器學習模型-那么接下來呢?你需要對它進行評估,並驗證它有多好(或有多壞),這樣你就可以決定是否實現它。這時就可以引入AUC-ROC曲線了。 這個名字可能有 ...
一. ROC曲線 1、roc曲線:接收者操作特征(receiveroperating characteristic),roc曲線上每個點反映着對同一信號刺激的感受性。 橫軸:負正類率(false postive rate FPR)特異度,划分實例中所有負例占所有負例的比例 ...
1.什么是ROC: ROC曲線:接收者操作特征曲線(receiver operating characteristic curve),是反映敏感性和特異性連續變量的綜合指標,roc曲線上每個點反映着對同一信號刺激的感受性。 2.如果學習ROC,首先必須知 ...
五、衡量分類任務的性能指標 5、ROC曲線與AUC (1)ROC曲線 ROC曲線( Receiver Operating Cha\fracteristic Curve )描述的 TPR ( True Positive Rate )與 FPR ( False Positive ...
由於ROC曲線面積比較難求得,所以判斷模型好壞一般使用AUC曲線 關於AUC曲線的繪制,西瓜書上寫得比較學術,不太能理解,假設有這么一個樣本集: 假設預測樣本為20個,預測為正類的概率已經進行了排序,得分遞減,畫圖步驟為: (1) 在所排序的樣本最左邊,畫一條線即 無 ...
引言 很多時候我們都用到ROC和AUC來評判一個二值分類器的優劣,其實AUC跟ROC息息相關,AUC就是ROC曲線下部分的面積,所以需要首先知道什么是ROC,ROC怎么得來的。然后我們要知道一般分類器會有個准確率ACC,那么既然有了ACC,為什么還要有ROC呢,ACC和ROC ...
一、前述 怎么樣對訓練出來的模型進行評估是有一定指標的,本文就相關指標做一個總結。 二、具體 1、混淆矩陣 混淆矩陣如圖: 第一個參數true,false是指預測的正確性。 第二個 ...
分類器性能指標之ROC曲線、AUC值 一 roc曲線 1、roc曲線:接收者操作特征(receiveroperating characteristic),roc曲線上每個點反映着對同一信號刺激的感受性。 橫軸:負正類率(false postive rate FPR)特異度,划分實例中所有負例 ...