背景與原理: 聚類問題與分類問題有一定的區別,分類問題是對每個訓練數據,我給定了類別的標簽,現在想要訓練一個模型使得對於測試數據能輸出正確的類別標簽,更多見於監督學習;而聚類問題則是我們給出了一組數據,我們並沒有預先的標簽,而是由機器考察這些數據之間的相似性,將相似的數據聚為一類,是無監督學習 ...
一 聚類的概念 聚類分析是在數據中發現數據對象之間的關系,將數據進行分組,組內的相似性越大,組間的差別越大,則聚類效果越好。我們事先並不知道數據的正確結果 類標 ,通過聚類算法來發現和挖掘數據本身的結構信息,對數據進行分簇 分類 。聚類算法的目標是,簇內相似度高,簇間相似度低 二 基本的聚類分析算法 . K均值 K Means : 基於原型的 划分的距離技術,它試圖發現用戶指定個數 K 的簇。 . ...
2019-02-18 01:11 0 6310 推薦指數:
背景與原理: 聚類問題與分類問題有一定的區別,分類問題是對每個訓練數據,我給定了類別的標簽,現在想要訓練一個模型使得對於測試數據能輸出正確的類別標簽,更多見於監督學習;而聚類問題則是我們給出了一組數據,我們並沒有預先的標簽,而是由機器考察這些數據之間的相似性,將相似的數據聚為一類,是無監督學習 ...
本文主要基於Anand Rajaraman和Jeffrey David Ullman合著,王斌翻譯的《大數據-互聯網大規模數據挖掘與分布式處理》一書。 KMeans算法是最常用的聚類算法,主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數據記錄)分到離其最近的類簇中心點 ...
。 KMeans算法是最常用的聚類算法,主要思想是:在給定K值和K個初始類簇中心點的情況下,把每個點(亦即數 ...
1、K-Means原理 K-Means算法的基本思想很簡單,對於給定的樣本集,按照樣本之間的距離大小,將樣本集划分為K個簇。讓簇內的點盡量緊密的連在一起,而讓簇間的距離盡量的大。 如果用數據表達式表示,假設簇划分為(C1,C2,...Ck),則我們的目標是最小化平方誤差E: \[E ...
1.簡介 K-means算法是最為經典的基於划分的聚類方法,是十大經典數據挖掘算法之一。K-means算法的基本思想是:以空間中k個點為中心進行聚類,對最靠近他們的對象歸類。通過迭代的方法,逐次更新各聚類中心的值,直至得到最好的聚類結果。 2. 算法大致流程 ...
共有以下幾種評價指標: 其中,僅輪廓系數比較合理,別的不過是牽強附會罷了,就差欺世盜名了。 混淆矩陣均- -性完整性V-measure調整蘭德系數(ARI)調整互信息(AMI)輪廓系數(Silho ...
這個算法中文名為k均值聚類算法,首先我們在二維的特殊條件下討論其實現的過程,方便大家理解。 第一步.隨機生成質心 由於這是一個無監督學習的算法,因此我們首先在一個二維的坐標軸下隨機給定一堆點,並隨即給定兩個質心,我們這個算法的目的就是將這一堆點根據它們自身的坐標特征分為兩類,因此選取了兩個質心 ...
聚類算法 任務:將數據集中的樣本划分成若干個通常不相交的子集,對特征空間的一種划分。 性能度量:類內相似度高,類間相似度低。兩大類:1.有參考標簽,外部指標;2.無參照,內部指標。 距離計算:非負性,同一性(與自身距離為0),對稱性,直遞性(三角不等式)。包括歐式距離(二范數 ...