在之前的強化學習文章里,我們講到了經典的MDP模型來描述強化學習,其解法包括value iteration和policy iteration,這類經典解法基於已知的轉移概率矩陣P,而在實際應用中,我們很難具體知道轉移概率P。伴隨着這類問題的產生,Q-Learning通過迭代來更新Q表擬合實際 ...
在強化學習 十四 Actor Critic中,我們討論了Actor Critic的算法流程,但是由於普通的Actor Critic算法難以收斂,需要一些其他的優化。而Asynchronous Advantage Actor critic 以下簡稱A C 就是其中比較好的優化算法。本文我們討論A C的算法原理和算法流程。 本文主要參考了A C的論文,以及ICML 的deep RL tutorial ...
2019-01-29 18:09 46 20611 推薦指數:
在之前的強化學習文章里,我們講到了經典的MDP模型來描述強化學習,其解法包括value iteration和policy iteration,這類經典解法基於已知的轉移概率矩陣P,而在實際應用中,我們很難具體知道轉移概率P。伴隨着這類問題的產生,Q-Learning通過迭代來更新Q表擬合實際 ...
一文讀懂 深度強化學習算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 對於 A3C 算法感覺自己總是一知半解,現將其梳理一下,記錄在此,也給想學習的小伙伴一個參考。 想要認識清楚這個算法,需要對 DRL 的算法 ...
讀論文《Asynchronous methods for deep reinforcement learning》有感 --------------------------------- ...
強化學習總結 強化學習的故事 強化學習是學習一個最優策略(policy),可以讓本體(agent)在特定環境(environment)中,根據當前的狀態(state),做出行動(action),從而獲得最大回報(G or return)。 有限馬爾卡夫決策過程 馬爾卡夫決策過程理論 ...
強化學習: 強化學習作為一門靈感來源於心理學中的行為主義理論的學科,其內容涉及 概率論、統計學、逼近論、凸分析、計算復雜性理論、運籌學 等多學科知識,難度之大,門檻之高,導致其發展速度特別緩慢。 一種解釋: 人的一生其實都是不斷在強化學習,當你有個動作(action)在某個狀態 ...
1. 定義 機器學習算法可以分為3種:有監督學習(Supervised Learning)、無監督學習(Unsupervised Learning)和強化學習(Reinforcement Learning)。強化學習(Reinforcement Learning, RL),又稱再勵學習、評價學習 ...
Reinforcement learning 是機器學習里面的一個分支,特別善於控制一只能夠在某個環境下 自主行動 的個體 (autonomous agent),透過和 環境 之間的互動,例如 sensory perception 和 rewards,而不斷改進它的 行為 。 聽到強化學習 ...
強化學習從入門到放棄 目錄 強化學習從入門到放棄 雜談 MDP MP MRP Bellman Equation MDP ...