先來說說回歸的思想吧: 常見的回歸就是通過一系列的點,計算得到一條線。當有新的輸入時,可以直接計算得到輸出。用最小二乘法求解線性回歸方程就是我們最早接觸到的回歸。對於線的表示都不盡相同,如線性回歸得到的預測函數是y=w⃗ T∗x⃗ +a,邏輯回歸則是一條S型曲線。 邏輯回歸和線性回歸 ...
.Logistic Regression是一個二元分類問題 已知輸入的特征向量x可能是一張圖,你希望把它識別出來,這是不是貓圖,你需要一個算法,可以給出預測值,更正式的y是一個概率,當輸入特征x滿足條件的時候y就是 。換句話說,如果x是圖片,那就需要拿到一張貓圖的概率。 Sigmoid函數。這里就不多說了,關於sigmoid自己百度,很簡單 為了訓練logistic回歸模型的參數w和b,需要定義 ...
2019-01-21 21:21 0 4669 推薦指數:
先來說說回歸的思想吧: 常見的回歸就是通過一系列的點,計算得到一條線。當有新的輸入時,可以直接計算得到輸出。用最小二乘法求解線性回歸方程就是我們最早接觸到的回歸。對於線的表示都不盡相同,如線性回歸得到的預測函數是y=w⃗ T∗x⃗ +a,邏輯回歸則是一條S型曲線。 邏輯回歸和線性回歸 ...
12.支持向量機 覺得有用的話,歡迎一起討論相互學習~ 吳恩達老師課程原地址 參考資料 斯坦福大學 2014 機器學習教程中文筆記 by 黃海廣 12.1 SVM損失函數 從邏輯回歸到支持向量機 為了描述支持向量機,事實上,我將會從邏輯回歸開始展示 ...
本章主要講解了邏輯回歸相關的問題,比如什么是分類?邏輯回歸如何定義損失函數?邏輯回歸如何求最優解?如何理解決策邊界?如何解決多分類的問題? 更多內容參考 機器學習&深度學習 有的時候我們遇到的問題並不是線性的問題,而是分類的問題。比如判斷郵件是否是垃圾郵件,信用卡交易是否正常 ...
問題:線性回歸中,當我們有m個樣本的時候,我們用的是損失函數是但是,到了邏輯回歸中,損失函數一下子變成那么,邏輯回歸的損失函數為什么是這個呢? 本文目錄 1. 前置數學知識:最大似然估計 1.1 似然函數 1.2 最大似然估計 2. 邏輯回歸損失函數 ...
在這段視頻中,我們要介紹如何擬合邏輯回歸模型的參數𝜃。具體來說,我要定義用來擬合參數的優化目標或者叫代價函數,這便是監督學習問題中的邏輯回歸模型的擬合問題。 對於線性回歸模型,我們定義的代價函數是所有模型誤差的平方和。理論上來說,我們也可以對邏輯回歸模型沿用這個定義,但是問題在於,當我 ...
01. 神經網絡和深度學習 第四周 深層神經網絡 4.1 & 4.2 深層神經網絡 logistic回歸模型可以看作一層網絡,通過增加隱藏層的層數,就可以得到深層網絡了。 4.3 檢查矩陣的維數 確保神經網絡計算正確的有效方法之一就是檢查矩陣的維數,包括數據矩陣、參數 ...
神經網絡和深度學習 課程 1-1深度學習概述 2-1 神經網絡的編程基礎 2-2 邏輯回歸代價函數與梯度下降 2-3 計算圖與邏輯回歸中的梯度下降 2-4 向量化 2-5 向量化邏輯回歸 2-6 向量化 logistic 回歸的梯度輸出 2-7 Python ...
本文目錄: 1. sigmoid function (logistic function) 2. 邏輯回歸二分類模型 3. 神經網絡做二分類問題 4. python實現神經網絡做二分類問題 ...