原文:EM算法之GMM聚類

以下為GMM聚類程序 import pandas as pd import matplotlib.pyplot as plt import numpy as np data pd.read csv Fremont.csv ,index col Date ,parse dates True print data.head data.plot plt.show data.resample w .su ...

2019-01-09 11:37 0 599 推薦指數:

查看詳情

GMMEM算法實現

聚類算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我們給出了GMM算法的基本模型與似然函數,在EM算法原理中對EM算法的實現與收斂性證明進行了具體說明。本文主要針對怎樣用EM算法在混合高斯模型下進行聚類進行代碼上的分析說明 ...

Mon Jul 14 03:48:00 CST 2014 0 3062
GMMEM算法

GMMEM算法 標簽(空格分隔): 機器學習 前言: EM(Exception Maximizition) -- 期望最大化算法,用於含有隱變量的概率模型參數的極大似然估計; GMM(Gaussian Mixture Model) -- 高斯混合模型,是一種多個 ...

Fri Jul 29 23:59:00 CST 2016 0 1532
EM算法GMM

EM算法GMM Hongliang He 2014年4月 hehongliang168168@126.com 注:本文主要參考Andrew Ng的Lecture notes 8,並結合自己的理解和擴展完成。 GMM簡介 GMM(Gaussian mixture model) 混合高斯模型 ...

Sat May 31 19:26:00 CST 2014 1 4879
EM聚類算法簡介

大部分內容援引自別處 有少許修改 EM聚類算法一般多用於為了對數據進行訓練而確定相關公式中的參數 1.一般概念介紹 最大期望算法(Expectation-maximization algorithm,又譯期望最大化算法)在統計中被用於尋找,依賴於不可觀察的隱性變量的概率模型中,參數 ...

Sun Jul 22 04:21:00 CST 2012 0 15315
3. EM算法-高斯混合模型GMM

1. EM算法-數學基礎 2. EM算法-原理詳解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM詳細代碼實現 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在機器學習、計算機視覺 ...

Sun Dec 16 06:15:00 CST 2018 0 2972
EM算法和高斯混合模型GMM介紹

EM算法 EM算法主要用於求概率密度函數參數的最大似然估計,將問題$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$轉換為更加易於計算的$\sum_{i=1}^{n} \ln p\left ...

Fri Jun 21 06:41:00 CST 2019 0 555
EM算法解析以及EM應用於GMM

目錄 參考blog and 視頻 EM算法的定義 一、極大似然 1.1 似然函數 1.2 似然函數舉例:已知樣本X,求參數θ 1.3 極大似然即最大可能 二、EM算法的理解 ...

Fri Oct 08 01:05:00 CST 2021 0 166
聚類之K均值聚類EM算法

這篇博客整理K均值聚類的內容,包括: 1、K均值聚類的原理; 2、初始類中心的選擇和類別數K的確定; 3、K均值聚類EM算法、高斯混合模型的關系。 一、K均值聚類的原理 K均值聚類(K-means)是一種基於中心的聚類算法,通過迭代,將樣本分到K個類中,使得每個樣本與其所屬類 ...

Mon May 13 21:03:00 CST 2019 0 1086
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM