原文:2. K-Means的優化

. K Means原理解析 . K Means的優化 . sklearn的K Means的使用 . K Means和K Means 實現 . 前言 上一篇博文K Means原理解析簡單清晰的闡述了K Means的原理和過程。但是還有一些在使用K Means過程中會遇到的問題,我們本文進行分析和討論。比如:如何選取初始質心的位置,如何處理距離計算的時候效率低的問題。 . 選取初始質心的位置 假設我 ...

2019-01-05 22:03 0 2636 推薦指數:

查看詳情

K-means算法性能評估及其優化

1、 SSE誤差平方和(Sum of Square due to Error): 聚類情況: 計算公式: 注:SSE參數計算的內容為當前迭代得到的中心位置到各自中心點簇的歐式距離總和,這 ...

Wed Apr 10 20:01:00 CST 2019 0 2648
K-means Algorithm

在監督學習中,有標簽信息協助機器學習同類樣本之間存在的共性,在預測時只需判定給定樣本與哪個類別的訓練樣本最相似即可。在非監督學習中,不再有標簽信息的指導,遇到一維或二維數據的划分問題,人用肉眼就很容易 ...

Sat Nov 16 02:34:00 CST 2013 0 2479
聚類-K-Means

1.什么是K-MeansK均值算法聚類 關鍵詞:K個種子,均值聚類的概念:一種無監督的學習,事先不知道類別,自動將相似的對象歸到同一個簇中 K-Means算法是一種聚類分析(cluster analysis)的算法,其主要是來計算數據聚集的算法,主要通過不斷地取離種子點最近均值的算法 ...

Wed Dec 04 17:03:00 CST 2019 0 354
K-Means ++ 算法

K-Means ++ 算法 k-means++算法選擇初始seeds的基本思想就是:初始的聚類中 ...

Sun Jun 26 02:04:00 CST 2016 0 4297
sklearn k-means

一.k-means原理 k-means屬於無監督學習。 將原始點分成3類 k的取值, 1.需要將樣本分成幾類,k就取幾 2.通過網格搜索自動調節 中心點計算:所有點的x,y,z取平均(x1+x2+……xn)/n,(y1+y2+yn)/n ...

Thu Oct 31 19:37:00 CST 2019 0 375
K-means 算法

本學習筆記參考自吳恩達老師機器學習公開課 聚類算法是一種無監督學習算法。k均值算法是其中應用最為廣泛的一種,算法接受一個未標記的數據集,然后將數據聚類成不同的組。K均值是一個迭代算法,假設我們想要將數據聚類成K個組,其方法為: 隨機選擇K個隨機的點(稱為聚類中心 ...

Wed Dec 06 02:48:00 CST 2017 1 10820
K-Means算法

聚類與分類的區別 分類 類別是已知的,通過對已知分類的數據進行訓練和學習,找到這些不同類的特征,再對未分類的數據進行分類。屬於監督學習。 聚類 事先不知道數據會分為幾類,通過聚類分析將數據聚合 ...

Wed Oct 10 00:09:00 CST 2018 0 4554
K-means

K-均值算法的基本思想是首先從含有N個數據對象的數據集中隨機選擇K個數據對象作為初始中心,然后計算每個數據對象到各中心的距離,根據最近鄰原則,所有數據對象將會被划分到離它最近的那個中心所代表的簇中,接着分別計算新生成的各個簇中數據對象的均值作為各簇新的中心,比較新的中心和上一次得到 ...

Wed Apr 16 00:06:00 CST 2014 0 4646
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM