GAN的全稱是 Generative Adversarial Networks,中文名稱是生成對抗網絡。原始的GAN是一種無監督學習方法,巧妙的利用“博弈”的思想來學習生成式模型。 1 GAN的原理 GAN的基本原理很簡單,其由兩個網絡組成,一個是生成網絡G(Generator ...
最近一直在看GAN,我一直認為只有把博客看了一遍,然后再敲一遍。這樣才會有深刻的感悟。 GAN 生成式對抗網絡 GAN, Generative Adversarial Networks 是一種深度學習模型,分布在無監督學習上。 分成兩個模塊:生成模型 Generative Model 和判別模型 Discriminative Model 。簡單來說就是:兩個人比賽,看是A的矛厲害,還是B的盾厲害。 ...
2018-12-28 11:06 0 1174 推薦指數:
GAN的全稱是 Generative Adversarial Networks,中文名稱是生成對抗網絡。原始的GAN是一種無監督學習方法,巧妙的利用“博弈”的思想來學習生成式模型。 1 GAN的原理 GAN的基本原理很簡單,其由兩個網絡組成,一個是生成網絡G(Generator ...
GAN 簡介 GAN,Generative Adversarial Networks,生成對抗網絡; GAN 被認為是 AI 領域 最有趣的 idea,一句話,歷史地位很高,很火; GAN 是由 Goodfellow 大神在 2014 年提出來的,當時的 G 神還只是個蒙特利爾大學的博士生 ...
0901-生成對抗網絡GAN的原理簡介 目錄 一、GAN 概述 二、GAN 的網絡結構 三、通過一個舉例具體化 GAN 四、GAN 的設計細節 pytorch完整教程目錄:https://www.cnblogs.com/nickchen121/p ...
視頻教程的鏈接:http://campus.swarma.org/gpac=8 一、什么是GAN 框架簡述 GAN全稱是Generative Adversarial Nets,中文叫做“生成對抗網絡”。 在GAN中有2個網絡,一個網絡用於生成數據,叫做“生成器”。另一個網絡用於判別生成 ...
生成式對抗網絡(GAN, Generative Adversarial Networks )是一種深度學習模型,是最近超級火的一個無監督學習方法,它主要由兩部分組成,一部分是生成模型G(generator),另一部分是判別模型D(discriminator),它的訓練過程可大致描述如下: 生成 ...
轉自:https://zhuanlan.zhihu.com/p/24767059,感謝分享 生成式對抗網絡(GAN)是近年來大熱的深度學習模型。最近正好有空看了這方面的一些論文,跑了一個GAN的代碼,於是寫了這篇文章來介紹一下GAN。本文主要分為三個部分: 介紹原始的GAN的原理 ...
論文地址:https://arxiv.org/pdf/1406.2661.pdf 1、簡介: GAN的兩個模型 判別模型:就是圖中右半部分的網絡,直觀來看就是一個簡單的神經網絡結構,輸入就是一副圖像,輸出就是一個概率值,用於判斷真假使用(概率值大於0.5那就是真,小於0.5 ...
轉自:https://blog.csdn.net/ch18328071580/article/details/96690016 概述 1、什么是GAN? 生成對抗網絡簡稱GAN,是由兩個網絡組成的,一個生成器網絡和一個判別器網絡。這兩個網絡可以是神經網絡(從卷積神經網絡、循環神經網絡到自編 ...