原文:【UOJ448】【集訓隊作業2018】人類的本質 min_25篩

題目大意 給你 n,m ,求 sum i n sum x ,x , ldots,x m i operatorname lcm gcd i,x , gcd i,x , ldots, gcd i,x m 對 取模。 nm leq 題解 先推一下式子: ans sum i n sum x ,x , ldots,x m i operatorname lcm gcd i,x , gcd i,x , ldot ...

2018-12-26 20:42 2 556 推薦指數:

查看詳情

UOJ #449. 【集訓隊作業2018】喂鴿子

http://uoj.ac/problem/449 題解 warning:式子全都抄的題解。 我們可以先套一層\(\min-\max\)反演。 \[ans=\sum_{i=1}^n (-1)^{i-1}\binom{n}{i}g_i \] 那么\(g_i\)就表示喂飽\(i\)只 ...

Sun Jun 16 17:41:00 CST 2019 0 443
UOJ#422】【集訓隊作業2018】小Z的禮物(min-max容斥,輪廓線dp)

UOJ#422】【集訓隊作業2018】小Z的禮物(min-max容斥,輪廓線dp) 題面 UOJ 題解 毒瘤xzy,怎么能搬這種題當做WC模擬題QwQ 一開始開錯題了,根本就不會做。 后來發現是每次任意覆蓋相鄰的兩個,那么很明顯就可以套\(min-max\)容斥。 要求的就是\(max ...

Fri Jan 04 03:33:00 CST 2019 5 639
min_25

min_25 用來干啥? 考慮一個積性函數\(F(x)\),用來快速計算前綴和$$\sum_{i=1}^nF(i)$$ 當然,這個積性函數要滿足\(F(x),x\in Prime\)可以用多項式表示 同時,\(F(x^k),x\in Prime\)要能夠快速計算答案 需要預處理的東西 ...

Fri Jun 15 05:44:00 CST 2018 9 6893
uoj#418. 【集訓隊作業2018】三角形(線段樹合並)

傳送門 好迷啊……膜一下ljz 考慮每個操作,如果把操作按先后順序放到序列上的話,操作一就是把\(w_i\)的石子放到某個節點,那么就是在序列末端加入\(w_i\),然后根據貪心肯定要把它所有兒子 ...

Mon Jan 07 18:01:00 CST 2019 3 446
Min_25

Min_25 是一種亞線性篩法,可以在 \(\mathcal{O}(\frac{n^{\frac{3}{4}}}{\log n})\) 的時間復雜度下快速算出形如: \[\sum_{i=1}^n f(i) \] 的值,不過一般比較好實現的方法被證明復雜度是 \(\mathcal{O ...

Fri Mar 18 05:41:00 CST 2022 2 2085
Min_25

Min_25 yyb好神仙啊 干什么用的 可以在\(O(\frac{n^{\frac 34}}{\log n})\)的時間內求積性函數\(f(x)\)的前綴和。 別問我為什么是這個復雜度 要求\(f(p)\)是一個關於\(p\)的簡單多項式,\(f(p^c)\)可以快速計算 ...

Fri Jun 15 22:56:00 CST 2018 8 11644
2018集訓隊作業

非常抱歉,這篇文章鴿了,但是你可以在 github 上面看到它 wxh zzq ...

Sun Nov 25 01:37:00 CST 2018 0 1035
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM