參考鏈接: https://www.cnblogs.com/JeasonIsCoding/p/10171201.html https://blog.csdn.net/qq_27095227/article/details/103775032 二分類的交叉熵公式是: 如果是多分類,交叉熵公式 ...
分類問題中,交叉熵函數是比較常用也是比較基礎的損失函數,原來就是了解,但一直搞不懂他是怎么來的 為什么交叉熵能夠表征真實樣本標簽和預測概率之間的差值 趁着這次學習把這些概念系統學習了一下。 首先說起交叉熵,腦子里就會出現這個東西: 隨后我們腦子里可能還會出現Sigmoid 這個函數: pytorch中的CrossEntropyLoss 函數實際就是先把輸出結果進行sigmoid,隨后再放到傳統的交 ...
2018-12-25 14:12 2 12720 推薦指數:
參考鏈接: https://www.cnblogs.com/JeasonIsCoding/p/10171201.html https://blog.csdn.net/qq_27095227/article/details/103775032 二分類的交叉熵公式是: 如果是多分類,交叉熵公式 ...
本篇借鑒了這篇文章,如果有興趣,大家可以看看:https://blog.csdn.net/geter_CS/article/details/84857220 1、交叉熵:交叉熵主要是用來判定實際的輸出與期望的輸出的接近程度 2、CrossEntropyLoss()損失函數結合 ...
官方示例: 1.在loss中的輸入中,target為類別的index,而非one-hot編碼。 2.在輸入的target的index中,數據的范圍為[0, c-1],其中c為類別的總數,注意index的編碼從0開始。 ...
背景 多分類問題里(單對象單標簽),一般問題的setup都是一個輸入,然后對應的輸出是一個vector,這個vector的長度等於總共類別的個數。輸入進入到訓練好的網絡里,predicted class就是輸出層里值最大的那個entry對應的標簽。 交叉熵在多分類神經網絡訓練中用的最多 ...
交叉熵(cross entropy):用於度量兩個概率分布間的差異信息。交叉熵越小,代表這兩個分布越接近。 函數表示(這是使用softmax作為激活函數的損失函數表示): (是真實值,是預測值。) 命名說明: pred=F.softmax(logits),logits是softmax ...
最近又回實驗室了,開始把空閑將近半年忘記的東西慢慢找回來。先把之前這邊用英文寫的介紹交叉熵的文章翻譯了。 背景 In classification, the most common setup is with one input, and the output is a vector ...
一、pytorch中各損失函數的比較 Pytorch中Softmax、Log_Softmax、NLLLoss以及CrossEntropyLoss的關系與區別詳解 Pytorch詳解BCELoss和BCEWithLogitsLoss 總結這兩篇博客的內容 ...
交叉熵損失函數原理詳解 一、總結 一句話總結: 1、叉熵損失函數(CrossEntropy Loss):分類問題中經常使用的一種損失函數 2、交叉熵能夠衡量同一個隨機變量中的兩個不同概率分布的差異程度,在機器學習中就表示為真實概率分布與預測概率分布之間的差異。交叉熵的值越小,模型預測效果 ...