原文:sklearn-特征工程之特征選擇

title: sklearn 特征工程之特征選擇 date: : : categories: skearn tags: sklearn 抄襲 參考資料 使用sklearn做單機特征工程 sckearn中文 周志華 機器學習 當數據預處理完成后,我們需要選擇有意義的特征輸入機器學習的算法和模型進行訓練。通常來說,從兩個方面考慮來選擇特征: 特征是否發散:如果一個特征不發散,例如方差接近於 ,也就是 ...

2018-12-01 16:45 0 1107 推薦指數:

查看詳情

2. 特征工程之特征選擇

1. 特征工程之特征預處理 2. 特征工程之特征選擇 1. 前言 當數據預處理完成后,我們需要選擇有意義的特征輸入機器學習的算法和模型進行訓練。 2. 特征選擇的方法 通常來說,從兩個方面考慮來選擇特征特征是否發散:如果一個特征不發散,例如方差接近於0,也就是說樣本在這個特征 ...

Fri Nov 16 18:17:00 CST 2018 0 3106
特征工程之特征選擇

    特征工程是數據分析中最耗時間和精力的一部分工作,它不像算法和模型那樣是確定的步驟,更多是工程上的經驗和權衡。因此沒有統一的方法。這里只是對一些常用的方法做一個總結。本文關注於特征選擇部分。后面還有兩篇會關注於特征表達和特征預處理。 1. 特征的來源     在做數據分析的時候,特征 ...

Mon May 14 04:13:00 CST 2018 95 35529
sklearn——特征選擇

一、關於特征選擇 主要參考連接為:參考鏈接,里面有詳細的特征選擇內容。 介紹 特征選擇特征工程里的一個重要問題,其目標是尋找最優特征子集。特征選擇能剔除不相關(irrelevant)或冗余(redundant )的特征,從而達到減少特征個數,提高模型精確度,減少運行時間的目的。另一方 ...

Mon Sep 23 18:04:00 CST 2019 0 638
sklearn特征選擇和降維

1.13 特征選擇 sklearn.feature_selection模塊中的類可以用於樣本集上的特征選擇/降維,以提高估計器的精度值,或提高其應用在高維數據集上的性能。 1.13.1 刪除低方差的特征 VarianceThreshold是一種簡單的特征選擇baseline方法。它刪除了方差 ...

Sat Nov 02 20:45:00 CST 2019 0 664
sklearn特征選擇方法及參數

  本文結合sklearn中的特征選擇的方法,講解相關方法函數及參數的含義。 1. 移除低方差特征   方差越大的特征,可以認為是對目標變量越有影響的特征,是我們需要研究的特征。可以利用 VarianceThreshold,移除方差不滿足一定閾值的特征。   class ...

Thu Sep 13 18:33:00 CST 2018 0 4904
sklearn特征選擇和分類模型

sklearn特征選擇和分類模型 數據格式: 這里。原始特征的輸入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2這樣的稀疏矩陣的格式。 sklearn中自帶 ...

Sun Jul 23 23:29:00 CST 2017 0 2287
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM