1. BERT簡介 Transformer架構的出現,是NLP界的一個重要的里程碑。它激發了很多基於此架構的模型,其中一個非常重要的模型就是BERT。 BERT的全稱是Bidirectional Encoder Representation from Transformer,如名稱所示 ...
BERT Bidirectional Encoder Representations from Transformers 是谷歌AI研究人員最近發表的一篇論文:BERT: Pre training of Deep Bidirectional Transformers for Language Understanding。它通過在各種各樣的NLP任務中呈現最先進的結果,包括問答 SQuAD v . ...
2018-11-21 13:09 1 1042 推薦指數:
1. BERT簡介 Transformer架構的出現,是NLP界的一個重要的里程碑。它激發了很多基於此架構的模型,其中一個非常重要的模型就是BERT。 BERT的全稱是Bidirectional Encoder Representation from Transformer,如名稱所示 ...
關於NLP領域內預訓練的一些知識。記得很雜亂,主要用於個人理解,精華內容在學習資料。 一. 學習資料 從Word Embedding到Bert模型—自然語言處理中的預訓練技術發展史 nlp中的詞向量對比:word2vec/glove/fastText/elmo/GPT/bert ...
1.什么是Bert? Bert用我自己的話就是:使用了transformer中encoder的兩階段兩任務兩版本的語言模型 沒錯,就是有好多2,每個2有什么意思呢? 先大體說一下,兩階段是指預訓練和微調階段,兩任務是指Mask Language和NSP任務,兩個版本是指Google發布 ...
內容是結合:https://zhuanlan.zhihu.com/p/49271699 可以直接看原文 預訓練一般要從圖像處理領域說起:可以先用某個訓練集合比如訓練集合A或者訓練集合B對這個網絡進行預先訓練,在A任務上或者B任務上學會網絡參數,然后存起來以備后用。假設我們面臨第三個任務C ...
語言模型 語言模型是根據語言客觀事實對語言進行抽象數學建模。可以描述為一串單詞序列的概率分布: 通過極大化L可以衡量一段文本是否更像是自然語言(根據文本出現的概率): 函數P的核心在於, ...
隨着bert在NLP各種任務上取得驕人的戰績,預訓練模型在這不到一年的時間內得到了很大的發展,本系列的文章主要是簡單回顧下在bert之后有哪些比較有名的預訓練模型,這一期先介紹幾個國內開源的預訓練模型。 一,ERNIE(清華大學&華為諾亞) 論文:ERNIE: Enhanced ...
BERT-Large, Uncased (Whole Word Masking): 24-layer, 1024-hidden, 16-heads, 340M parameters BERT-Large, Cased (Whole Word Masking): 24-layer ...
在2017年之前,語言模型都是通過RNN,LSTM來建模,這樣雖然可以學習上下文之間的關系,但是無法並行化,給模型的訓練和推理帶來了困難,因此有人提出了一種完全基於attention來對語言建模的模型,叫做transformer。transformer擺脫了NLP任務對於RNN,LSTM的依賴 ...