前言: PCA是大家經常用來減少數據集的維數,同時保留數據集中對方差貢獻最大的特征來達到簡化數據集的目的。本文通過使用PCA來提取人臉中的特征臉這個例子,來熟悉下在oepncv中怎樣使用PCA這個類。 開發環境 ...
float vector docvector.getElementArray FloatMatrix d new FloatMatrix vector FloatMatrix result PCA.dimensionReduction d, ...
2018-11-05 14:13 0 941 推薦指數:
前言: PCA是大家經常用來減少數據集的維數,同時保留數據集中對方差貢獻最大的特征來達到簡化數據集的目的。本文通過使用PCA來提取人臉中的特征臉這個例子,來熟悉下在oepncv中怎樣使用PCA這個類。 開發環境 ...
PCA算法 主成分分析(Principal Component Analysis,PCA)是最常用的一種降維方法,通常用於高維數據集的探索與可視化,還可以用作數據壓縮和預處理等。PCA可以把具有相關性的高維變量合成為線性無關的低維變量,稱為主成分。主成分能夠盡可能保留原始數據的信息。PCA的計算 ...
有很多,而且分為線性降維和非線性降維,本篇文章主要講解線性降維中的主成分分析法(PCA)降維。顧名思義,就 ...
轉載請聲明出處:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA簡介 1. 相關背景 上完陳恩紅老師的《機器學習與知識發現》和季海波老師的《矩陣代數》兩門課之后,頗有體會。最近在做主成分分析和奇異值分解 ...
參考:菜菜的sklearn教學之降維算法.pdf!! PCA(主成分分析法) 1. PCA(最大化方差定義或者最小化投影誤差定義)是一種無監督算法,也就是我們不需要標簽也能對數據做降維,這就使得其應用范圍更加廣泛了。那么PCA的核心思想是什么呢? 例如D維變量構成的數據集,PCA的目標 ...
一下在PCA,第一次接觸這個名詞還是在學習有關CNN算法時,一篇博客提到的數據輸入層中,數據簡單處理的幾 ...
數據集中含有太多特征時,需要簡化數據。降維不是刪除部分特征,而是將高維數據集映射到低維數據集,映射后的數據集更簡潔,方便找出對結果貢獻最大的部分特征。 簡化數據的原因: 1、使得數據集更易使用 2、降低很多算法的計算開銷 3、去除噪聲 4、使得結果易懂 PCA:principal ...
PCA要做的事降噪和去冗余,其本質就是對角化協方差矩陣。 一.預備知識 1.1 協方差分析 對於一般的分布,直接代入E(X)之類的就可以計算出來了,但真給你一個具體數值的分布,要計算協方差矩陣,根據這個公式來計算,還真不容易反應過來。網上值得參考的資料也不多,這里用一個 ...