原文:關於 Dropout 防止過擬合的問題

關於 Dropout 可以防止過擬合,出處:深度學習領域大神 Hinton,在 年文獻: Improving neural networks by preventing co adaptation of feature detectors 提出的。 Dropout 可以防止過擬合 運用了dropout的訓練過程,相當於訓練了很多個只有半數隱層單元的神經網絡 后面簡稱為 半數網絡 ,每一個這樣的半 ...

2018-10-24 09:47 0 1584 推薦指數:

查看詳情

從頭學pytorch(七):dropout防止擬合

上一篇講了防止擬合的一種方式,權重衰減,也即在loss上加上一部分\(\frac{\lambda}{2n} \|\boldsymbol{w}\|^2\),從而使得w不至於過大,即不過分偏向某個特征. 這一篇介紹另一種防止擬合的方法,dropout,即丟棄某些神經元的輸出.由於每次訓練的過程里 ...

Tue Dec 31 23:38:00 CST 2019 0 8567
防止或減少過擬合的方式(二)——Dropout

當進行模型訓練的時候,往往可能錯過模型的最佳臨界點,即當達到最大精度的時候再進行訓練,測試集的精度會下降,這時候就會出現過擬合,如果能在其臨界點處提前終止訓練,就能得到表達力較強的模型,從而也避免了過擬合,這種方法就叫early stopping,但是這種方法多依靠人的經驗和感覺去判斷,因為無法 ...

Sun Feb 02 01:31:00 CST 2020 1 590
TensorFlow之tf.nn.dropout():防止模型訓練過程中的過擬合問題

一:適用范圍:   tf.nn.dropout是TensorFlow里面為了防止或減輕過擬合而使用的函數,它一般用在全連接層 二:原理:   dropout就是在不同的訓練過程中隨機扔掉一部分神經元。也就是讓某個神經元的激活值以一定的概率p,讓其停止工作,這次訓練過程中不更新權值,也不參加 ...

Mon May 28 00:48:00 CST 2018 0 2835
深度學習中 --- 解決過擬合問題dropout, batchnormalization)

擬合,在Tom M.Mitchell的《Machine Learning》中是如何定義的:給定一個假設空間H,一個假設h屬於H,如果存在其他的假設h’屬於H,使得在訓練樣例上h的錯誤率比h’小,但在整個實例分布上h’比h的錯誤率小,那么就說假設h過度擬合訓練數據。 也就是說,某一假設過度的擬合 ...

Sun Jun 12 19:15:00 CST 2016 1 5936
如何防止擬合

防止擬合 可以通過 1 增加augmentation(flip imgaug) 2 增加pooling(因為沒有參數) 3 增加l2正則化 lr正則化,就是l2范數,所以增加了l2范數loss會變成這樣 loss = L + lmda/2 * ||w|| l2范數 ...

Wed Mar 20 03:41:00 CST 2019 0 525
如何防止擬合及欠擬合

1 過擬合 1.1 定義 是指模型對於訓練數據擬合呈現過當的情況,反映到評估指標上就是模型在訓練集上的表現很好,但是在測試集上的表現較差。結果就是訓練出的模型泛化能力差。 1.2 如何防止擬合 防止擬合的方法有4種: 1)增加訓練集數據; 該方式是從數據入手,將更多的數據參與到模型 ...

Wed Jun 26 19:28:00 CST 2019 0 2034
CNN 防止擬合的方法

CNN 防止擬合的方法 因為數據量的限制以及訓練參數的增多,幾乎所有大型卷積神經網絡都面臨着過擬合問題,目前常用的防止擬合的方法有下面幾種: 1. data augmentation: 這點不需要解釋太多,所有的過擬合無非就是訓練樣本的缺乏和訓練參數 ...

Mon Oct 16 18:46:00 CST 2017 0 4765
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM