原文:卷積神經網絡CNN的原理(二)---公式推導

卷積神經網絡與普通神經網絡的區別在於,卷積神經網絡包含多個由卷積層和池化層構成的特征抽取器。在卷積神經網絡的卷積層中,一個神經元只與部分鄰層神經元連接。在CNN的一個卷積層中,通常包含若干個特征平面 featureMap ,每個特征平面由一些矩形排列的的神經元組成,同一特征平面的神經元共享權值,這里共享的權值就是卷積核。卷積核一般以隨機小數矩陣的形式初始化,在網絡的訓練過程中卷積核將學習得到合理 ...

2018-10-20 16:42 0 3856 推薦指數:

查看詳情

卷積神經網絡 CNN BP算法推導

重點在對CNN的理解后, 理解對卷積層的的 梯度(導數) 推演. 回顧 CNN 首先是對神經網絡, 前向, 后向的基本認識. 神經網絡初步認識來看, 跟傳統的 ML 理論的區別在於, 它更像一個經驗的過程, 即debug. 它將一個樣本輸入(向量) 的每個分量, 進行一些 奇怪 的線性處理 ...

Mon Feb 17 03:01:00 CST 2020 0 1991
卷積神經網絡(CNN)

卷積神經網絡(CNN) 在前面我們講述了DNN的模型與前向反向傳播算法。而在DNN大類中,卷積神經網絡(Convolutional Neural Networks,以下簡稱CNN)是最為成功的DNN特例之一。CNN廣泛的應用於圖像識別,當然現在也應用於NLP等其他領域,本文我們就對CNN的模型 ...

Sat Mar 04 00:10:00 CST 2017 0 1467
卷積神經網絡CNN

1. 卷積神經網絡結構介紹 卷積神經網絡CNN 最擅長的就是圖片的處理。它受到人類視覺神經系統的啟發。 CNN 有2大特點: 能夠有效的將大數據量的圖片降維成小數據量 能夠有效的保留圖片特征,符合圖片處理的原則 目前 CNN 已經得到了廣泛的應用,比如:人臉識別 ...

Tue Aug 03 05:59:00 CST 2021 0 389
卷積神經網絡CNN

卷積神經網絡CNN 作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/ 卷積神經網絡(Convolutional Neural Network,CNN 或ConvNet)是一種具有局部連接、權重共享等特性的深層前饋神經網絡卷積 ...

Sat Sep 11 00:45:00 CST 2021 0 181
CNN(卷積神經網絡)

神經網絡,聽起來像是計算機科學、生物學和數學的詭異組合,但它們已經成為計算機視覺領域中最具影響力的革新的一 ...

Tue Mar 27 07:50:00 CST 2018 0 11245
卷積神經網絡CNN

卷積神經網絡介紹 卷積神經網絡是一種多層神經網絡,擅長處理圖像特別是大圖像的相關機器學習問題。 最典型的卷積網絡,由卷積層、池化層、全連接層組成。其中卷積層與池化層配合,組成多個卷積組,逐層提取特征,最終通過若干個全連接層完成分類。 卷積層完成的操作,可以認為是受局部感受野概念的啟發,而池化 ...

Fri Nov 02 23:31:00 CST 2018 0 662
卷積神經網絡CNN

卷積神經網絡CNN) 1.1二維卷積卷積神經網絡是含有卷積層的神經網絡,均使用最常見的二維卷積層,它有高和寬兩個空間維度,常用來處理圖像數據。 1.1.1二維互相關運算 在二維卷積層中,一個二維輸入數組和一個二維核數組通過互相關運算輸出一個二維數組 ...

Wed Oct 16 03:48:00 CST 2019 0 374
卷積神經網絡CNN

from http://blog.jobbole.com/113819/?utm_source=blog.jobbole.com&utm_medium=relatedPosts 什么是卷積神經網絡,它為何重要? 卷積神經網絡(也稱作 ConvNets 或 CNN)是神經網絡 ...

Thu May 24 23:15:00 CST 2018 0 4010
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM