原文:神經網絡--參數初始化

. 參數初始化的目的是什么 為了讓神經網絡在訓練過程中學習到有用的信息,這意味着參數梯度不應該為 。而我們知道在全連接的神經網絡中,參數梯度和反向傳播得到的狀態梯度以及入激活值有關。那么參數初始化應該滿足以下兩個條件: 初始化必要條件一:各層激活值不會出現飽和現象 初始化必要條件二:各層激活值不為 。 . 把參數都初始化為 會是比較好的初始化 這樣做其實會帶來一個問題,經過正向傳播和反向傳播后, ...

2018-10-17 20:39 1 1610 推薦指數:

查看詳情

神經網絡參數初始化和批量歸一

1 參數初始化 神經網絡參數學習是一個非凸優化問題,在使用梯度下降法進行網絡參數優化時,參數初始值的選取十分關鍵,關系到網絡的優化效率(梯度消失和梯度爆炸問題)和泛化能力(局部最優解問題)。參數初始化的方式通常有以下三種: 預訓練初始化:不同的參數初始值會收斂到不同的局部最優解 ...

Thu Sep 03 01:57:00 CST 2020 0 691
神經網絡參數固定初始化pytorch

神經網絡中,參數默認是進行隨機初始化的。如果不設置的話每次訓練時的初始化都是隨機的,導致結果不確定。如果設置初始化,則每次初始化都是固定的。 ...

Wed Mar 17 16:25:00 CST 2021 0 431
【知識】神經網絡中的參數初始化

我們知道,訓練神經網絡的時候需先給定一個初試值,然后才能通過反向傳播等方法進行參數更新。所以參數初始化也是門學問。 全0初始化:不能這么做!!! 為什么呢?因為這樣做會導致所有參數都無法被更新。 網絡上有好多解釋,感覺都不夠簡潔,其實這個原理很簡單。 我們想象一個三層的神經網絡,節點分別為 ...

Tue Apr 16 00:09:00 CST 2019 0 1166
神經網絡之權重初始化

權重初始化 模型權重的初始化對於網絡的訓練很重要, 不好的初始化參數會導致梯度傳播問題, 降低訓練速度; 而好的初始化參數, 能夠加速收斂, 並且更可能找到較優解. 如果權重一開始很小,信號到達最后也會很小;如果權重一開始很大,信號到達最后也會很大。不合適的權重初始化會使得隱藏層的輸入 ...

Thu Mar 02 06:18:00 CST 2017 1 13501
為何神經網絡權重初始化要隨機初始化,不能以0為初始化

根據deeplearn.ai吳恩達深度學習課程3.11總結 因為如果W初始化為0 則對於任何Xi,每個隱藏層對應的每個神經元的輸出都是相同的,這樣即使梯度下降訓練,無論訓練多少次,這些神經元都是對稱的,無論隱藏層內有多少個結點,都相當於在訓練同一個函數。 ...

Mon Dec 18 04:45:00 CST 2017 0 4209
pytorch提取神經網絡模型層結構和參數初始化

torch.nn.Module()類有一些重要屬性,我們可用其下面幾個屬性來實現對神經網絡層結構的提取: 為方面說明,我們首先搭建一個簡單的神經網絡模型,后面所有的內容都是基於這個模型展開的。 運行 ...

Sun Aug 09 23:12:00 CST 2020 0 1114
什么時候可以將神經網絡參數全部初始化為0?

用SGD訓練神經網絡時, 怎樣決定初始化參數的方式? 主要有兩個考慮點: 一: 最終是否能得到想要的學習結果, 即是否能得到一個符合預期目標的分類器;二: 訓練時間, 好的參數初始化可以有效縮短訓練時間, 如預訓練. 不加思考時, 將所有參數初始化為0是最省力的做法. 有些情況下可行 ...

Tue Sep 13 06:30:00 CST 2016 0 3646
【DL-0】神經網絡權重的初始化方法

目錄 為什么要初始化 公式推導 初始化方法 引入激活函數 初始化方法分類 一、為什么要初始化 在深度學習中,神經網絡的權重初始化方法(weight initialization)對模型的收斂速度和性能有着至關重要的影響 ...

Sun Aug 30 03:33:00 CST 2020 0 1100
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM