“探索推薦引擎內部的秘密”系列將帶領讀者從淺入深的學習探索推薦引擎的機制,實現方法,其中還涉及一些基本的優化方法,例如聚類和分類的應用。同時在理論講解的基礎上,還會結合 Apache Mahout 介紹如何在大規模數據上實現各種推薦策略,進行策略優化,構建高效的推薦引擎的方法。本文 ...
基於內容的推薦引擎是怎么工作的 基於內容的推薦系統,正如你的朋友和同事預期的那樣,會考慮商品的實際屬性,比如商品描述,商品名,價格等等。如果你以前從沒接觸過推薦系統,然后現在有人拿槍指着你的頭,強迫你在三十秒之內描述出來,你可能會描述這樣一個基於內容的系統:呃,呃,我可能會給你看一大堆來自同一個廠家,並且擁有類似的說明的產品。 你正在利用商品本身的屬性來推薦類似的商品。這樣做非常合理,因為這就是 ...
2018-10-12 16:57 0 845 推薦指數:
“探索推薦引擎內部的秘密”系列將帶領讀者從淺入深的學習探索推薦引擎的機制,實現方法,其中還涉及一些基本的優化方法,例如聚類和分類的應用。同時在理論講解的基礎上,還會結合 Apache Mahout 介紹如何在大規模數據上實現各種推薦策略,進行策略優化,構建高效的推薦引擎的方法。本文 ...
這里采用的是.net的一個引用NReco.Recommender.dll,這是一個國外電影網站推薦系統衍生而來的,有興趣的可以到他們的官網看看。 以圖書商城為例 MVC 構造行為數據 首先需要對數據庫進行設計,增加一張用戶的行為數據表,記錄用戶訪問網站的行為,例如商城的一般記錄瀏覽 ...
轉載自:https://www.jianshu.com/p/1fd2b97fc765 原文鏈接:https://mp.weixin.qq.com/s/lUP2BehOh7KczR3WRnOqFw 愛奇藝推薦系統介紹 我們的推薦系統主要分為兩個階段,召回階段和排序階段 ...
目前,推薦系統廣泛應用於電商、信息流和地圖。工業級推薦系統架構一般以召回+推薦作為大框架。其中,以算法區分,如下圖所示。 離線/線上指標如下圖所示: 個性化召回算法是根據用戶的屬性行為上下文等信息從物品全集中選取其感興趣的物品作為候選集,召回決定了最終推薦結果的天花板。 個性化召回分為 ...
推薦系統核心任務是排序,從線上服務角度看,就是將數據從給定集合中數據選擇出來,選出后根據一定規則策略方法 進行排序。 線上服務要根據一定規則進行架構設計,架構設計是什么?每一次權衡取舍都是設計,設計需要理解需求、深入理解需 求基礎上做權衡取舍。復雜系統架構需要 ...
1 推薦技術 1)協同過濾: (1)基於user的協同過濾:根據歷史日志中用戶年齡,性別,行為,偏好等特征計算user之間的相似度,根據相似user對item的評分推薦item。缺點:新用戶冷啟動問題和數據稀疏不能找到置信 ...
今天的分享將為大家解答以下幾個問題:你的公司是否適合采用個性化推薦?如果需要個性化推薦,該如何做好?產品運營在參與到一個推薦系統的構建當中,有哪些常見的坑?有哪些可以避開這些坑的一些簡單方法?以及如何修煉成一個優秀的推薦產品經理? 一、“四個關鍵”為你揭開推薦系統的神秘面紗 個人認為,推薦系統 ...
原創文章,轉載請注明出處: http://blog.csdn.net/chengcheng1394/article/details/78820529 請安裝TensorFlow1.0,Python3.5 項目地址: https://github.com/chengstone ...