使用python語言 學習k近鄰分類器的api 歡迎來到我的git查看源代碼: https://github.com/linyi0604/MachineLearning ...
SVM分類器里面的東西好多呀,碾壓前兩個。怪不得稱之為深度學習出現之前表現最好的算法。 今天學到的也應該只是冰山一角,懂了SVM的一些原理。還得繼續深入學習理解呢。 一些關鍵詞: 超平面 hyper plane SVM的目標就是找到一個超平面把兩類數據分開。使邊際 margin 最大。如果把超平面定義為w x b .那么超平面距離任意一個支持向量的距離就是 w 。 w 是w的范數,也就是 w w ...
2018-08-23 21:06 1 24634 推薦指數:
使用python語言 學習k近鄰分類器的api 歡迎來到我的git查看源代碼: https://github.com/linyi0604/MachineLearning ...
git: https://github.com/linyi0604/MachineLearning 數據集被我下載到本地,可以去我的git上拿數據集 XGBoost提升分類器 屬於集成學習模型 把成百上千個分類准確率較低的樹模型組合起來 不斷迭代,每次迭代生成一顆新的樹 下面 對泰坦尼克遇難 ...
使用python3 學習朴素貝葉斯分類api 設計到字符串提取特征向量 歡迎來到我的git下載源代碼: https://github.com/linyi0604/MachineLearning ...
一、內容大綱 1,貝葉斯定理 一、貝葉斯定理 假設對於某個數據集,隨機變量C表示樣本為C類的概率,F1表示測試樣本某特征出現的概率,套用基本貝葉斯公式,則如下所示: 上式表示對於某個樣本,特征F1出現時,該樣本被分為C類的條件概率。那么如何用上式來對測試樣本分類呢? 舉例來說,有個測試 ...
朴素貝葉斯分類器是一個以貝葉斯定理為基礎,廣泛應用於情感分類領域的優美分類器。本文我們嘗試使用該分類器來解決上一篇文章中影評態度分類。 1、貝葉斯定理 假設對於某個數據集,隨機變量C表示樣本為C類的概率,F1表示測試樣本某特征出現的概率,套用基本貝葉斯公式,則如下所示: 上式表示 ...
1.主要內容 2.SVM的應用 (1)利用SVM處理分類問題 分類器的性能的評價指標: 應用案例: accuracy=3/6=0.5 precision=3/5=0.6 recall=3/4=0.75 3.代碼示例 (1)鳶尾花SVM案例 ...
使用python3 學習了線性回歸的api 分別使用邏輯斯蒂回歸 和 隨機參數估計回歸 對良惡性腫瘤進行預測 我把數據集下載到了本地,可以來我的git下載源代碼和數據集:https://github.com/linyi0604/MachineLearning ...
關鍵詞: 輸入層(Input layer)。隱藏層(Hidden layer)。輸出層(Output layer) 理論上如果有足夠多的隱藏層和足夠大的訓練集,神經網絡可以模擬出任何方程。隱藏層多的時候就是深度學習啦 沒有明確的規則來設計最好有多少個隱藏層,可以根據實驗測試的誤差以及准確度 ...