梯度算法之梯度上升和梯度下降 方向導數 當討論函數沿任意方向的變化率時,也就引出了方向導數的定義,即:某一點在某一趨近方向上的導數值。 導數和偏導數的定義中,均是沿坐標軸正方向討論函數的變化率。那么當討論函數沿任意方向的變化率時,也就引出了方向導數的定義,即:某一點在某一趨近 ...
警告:本文為小白入門學習筆記 由於之前寫過詳細的過程,所以接下來就簡單描述,主要寫實現中遇到的問題。 數據集是關於 人兩門成績來區分能否入學: 數據集: http: openclassroom.stanford.edu MainFolder DocumentPage.php course DeepLearning amp doc exercises ex ex .html 假設函數 hypothe ...
2018-08-21 19:43 4 1424 推薦指數:
梯度算法之梯度上升和梯度下降 方向導數 當討論函數沿任意方向的變化率時,也就引出了方向導數的定義,即:某一點在某一趨近方向上的導數值。 導數和偏導數的定義中,均是沿坐標軸正方向討論函數的變化率。那么當討論函數沿任意方向的變化率時,也就引出了方向導數的定義,即:某一點在某一趨近 ...
梯度上升法每次講當前參數向每個特征的梯度移動一小部分,經過多次迭代得到最后的解,在梯度上升的時候可以采用隨機取樣,雖然效果差不多,但是可以占用更少的計算資源,同時隨機梯度上升法是一個在線算法,他可以在新數據到來時就可以完成參數更新,而不需要重新讀取整個數據集來進行批處理計算 ...
線性回歸與梯度下降算法 作者:上品物語 轉載自:線性回歸與梯度下降算法講解 知識點: 線性回歸概念 梯度下降算法 l 批量梯度下降算法 l 隨機梯度下降算法 l 算法收斂判斷方法 1.1 線性回歸 在統計學中 ...
from:https://www.cnblogs.com/shibalang/p/4859645.html 多元線性回歸是最簡單的機器學習模型,通過給定的訓練數據集,擬合出一個線性模型,進而對新數據做出預測。 對應的模型如下: n: 特征數量。 一般選取殘差平方和最小化 ...
多元線性回歸是最簡單的機器學習模型,通過給定的訓練數據集,擬合出一個線性模型,進而對新數據做出預測。 對應的模型如下: n: 特征數量。 一般選取殘差平方和最小化作為損失函數,對應為: M:訓練樣本數量。 通過最小化代價損失函數,來求得 值,一般優化的方法有兩種,第一是梯度下降 ...
梯度下降算法的簡單理解 1 問題的引出 在線性回歸模型中,先設一個特征x與系數θ1,θ0,最后列出的誤差函數如下圖所示: 手動求解 目標是優化得到其最小化的J(θ1),下圖中的×為y(i),下面給出TrainSet:{(1,1),(2,2),(3,3)}通過手動尋找來找到最優解,由圖 ...
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何為梯度? 一般解釋: f(x)在x0的梯度:就是f(x)變化最快的方向 舉個例子,f()是一座山,站在半山腰, 往x方向走1米,高度上升0.4米,也就是說x ...