邏輯回歸詳細推導:http://lib.csdn.net/article/machinelearning/35119 面試常見問題:https://www.cnblogs.com/ModifyRong/p/7739955.html 1、LR和SVM有什么相同點 (1)都是監督分類 ...
一 SVM 思想在解決回歸問題上的體現 回歸問題的本質:找到一條直線或者曲線,最大程度的擬合數據點 怎么定義擬合,是不同回歸算法的關鍵差異 線性回歸定義擬合方式:讓所有數據點到直線的 MSE 的值最小 SVM 算法定義擬合的方式:在距離 Margin 的區域內,盡量多的包含樣本點 SVM 的思路解決回歸問題: 在 Margin 區域內的樣本點越多,則 Margin 區域越能夠較好的表達樣本數據點, ...
2018-08-13 23:43 0 1330 推薦指數:
邏輯回歸詳細推導:http://lib.csdn.net/article/machinelearning/35119 面試常見問題:https://www.cnblogs.com/ModifyRong/p/7739955.html 1、LR和SVM有什么相同點 (1)都是監督分類 ...
通常說的SVM與邏輯回歸的聯系一般指的是軟間隔的SVM與邏輯回歸之間的關系,硬間隔的SVM應該是與感知機模型的區別和聯系。而且工程中也不能要求所有的點都正確分類,訓練數據中噪聲的存在使得完全正確分類很可能造成過擬合。 軟間隔SVM與邏輯回歸的聯系 要說軟間隔SVM與聯系就要看軟間隔 ...
目錄 梯度下降法、拉格朗日乘子法、KKT條件回顧感知器模型回顧SVM線性可分SVM線性不可分核函數SMO SVM線性可分,SVM線性不可分,核函數,要求會推導 ———————————————————————————— 學習率(步長)可以是任何數,如果是二階 ...
一引言: 支持向量機這部分確實很多,想要真正的去理解它,不僅僅知道理論,還要進行相關的代碼編寫和測試,二者想和結合,才能更好的幫助我們理解SVM這一非常優秀的分類算法 支持向量機是一種二類分類算法,假設一個平面可以將所有的樣本分為兩類,位於正側的樣本為一類,值為+1,而位於負一側的樣本 ...
注:最近在工作中,高頻率的接觸到了SVM模型,而且還有使用SVM模型做回歸的情況,即SVR。另外考慮到自己從第一次知道這個模型到現在也差不多兩年時間了,從最開始的騰雲駕霧到現在有了一點直觀的認識,花費了不少時間。因此在這里做個總結,比較一下使用同一個模型做分類和回歸之間的差別,也紀念一下與SVM ...
和機器學習相關的課上,反復學習了這一經典算法,每次都有新的體會。借此機會做一個總結。 SVM是一種線性 ...
SVM是機器學習中神一般的存在,雖然自深度學習以來有被拉下神壇的趨勢,但不得不說SVM在這個領域有着舉足輕重的地位。本文從Hard SVM 到 Dual Hard SVM再引進Kernel Trick,然后推廣到常用的Soft Kernel SVM。 一、Hard SVM ...
今天是機器學習專題的第34篇文章,我們繼續來聊聊SVM模型。 我們在上一篇文章當中推導了SVM模型在硬間隔的原理以及公式,最后我們消去了所有的變量,只剩下了\(\alpha\)。在硬間隔模型當中,樣本是線性可分的,也就是說-1和1的類別可以找到一個平面將它完美分開。但是在實際當中,這樣的情況 ...