最大似然估計(Maximum likelihood estimation, 簡稱MLE)和最大后驗概率估計(Maximum aposteriori estimation, 簡稱MAP)是很常用的兩種參數估計方法。 1、最大似然估計(MLE) 在已知試驗結果(即是樣本)的情況下 ...
機器學習基本理論 詳解最大后驗概率估計 MAP 的理解 https: blog.csdn.net weixin article details 最大似然估計 Maximum likelihood estimation, 簡稱MLE 和最大后驗概率估計 Maximum a posteriori estimation, 簡稱MAP 是很常用的兩種參數估計方法,如果不理解這兩種方法的思路,很容易弄混它 ...
2018-08-13 13:18 0 2247 推薦指數:
最大似然估計(Maximum likelihood estimation, 簡稱MLE)和最大后驗概率估計(Maximum aposteriori estimation, 簡稱MAP)是很常用的兩種參數估計方法。 1、最大似然估計(MLE) 在已知試驗結果(即是樣本)的情況下 ...
機器學習基礎 目錄 機器學習基礎 1. 概率和統計 2. 先驗概率(由歷史求因) 3. 后驗概率(知果求因) 4. 似然函數(由因求果) 5. 有趣的野史--貝葉斯和似然之爭-最大似然概率(MLE)-最大后驗概率(MAE ...
1) 極/最大似然估計 MLE 給定一堆數據,假如我們知道它是從某一種分布中隨機取出來的,可是我們並不知道這個分布具體的參,即“模型已定,參數未知”。例如,我們知道這個分布是正態分布,但是不知道均值和方差;或者是二項分布,但是不知道均值。 最大似然估計(MLE,Maximum ...
學派 - Bayesian - Maximum A Posteriori (MAP,最大后驗估計) ...
1.前言 之前我一直對於“最大似然估計”犯迷糊,今天在看了陶輕松、憶臻、nebulaf91等人的博客以及李航老師的《統計學習方法》后,豁然開朗,於是在此記下一些心得體會。 “最大似然估計”(Maximum Likelihood Estimation, MLE)與“最大后驗概率估計 ...
1) 最大似然估計 MLE 給定一堆數據,假如我們知道它是從某一種分布中隨機取出來的,可是我們並不知道這個分布具體的參,即“模型已定,參數未知”。例如,我們知道這個分布是正態分布,但是不知道均值和方差;或者是二項分布,但是不知道均值。 最大似然估計(MLE,Maximum Likelihood ...
最大似然估計: 最大似然估計提供了一種給定觀察數據來評估模型參數的方法,即:“模型已定,參數未知”。簡單而言,假設我們要統計全國人口的身高,首先假設這個身高服從服從正態分布,但是該分布的均值與方差未知。我們沒有人力與物力去統計全國每個人的身高,但是可以通過采樣,獲取部分人的身高,然后通過最大似 ...
參考鏈接1 參考鏈接2 一、介紹 極大似然估計和貝葉斯估計分別代表了頻率派和貝葉斯派的觀點。頻率派認為,參數是客觀存在的,只是未知而矣。因此,頻率派最關心極大似然函數,只要參數求出來了,給定自變量X,Y也就固定了,極大似然估計如下所示: D表示訓練數據集,是模型參數 相反 ...