tf.nn.dropout函數 定義在:tensorflow/python/ops/nn_ops.py. 請參閱指南:層(contrib)>用於構建神經網絡層的高級操作,神經網絡>激活函數 該函數用於計算dropout. 使用概率keep_prob,輸出 ...
使用說明: 參數 keep prob: 表示的是保留的比例,假設為 . 則 的數據變為 ,然后其他的數據乘以 keep prob keep prob 越大,保留的越多 參數 noise shape:干擾形狀。 此字段默認是None,表示第一個元素的操作都是獨立,但是也不一定。比例:數據的形狀是shape x k, l, m, n ,而noise shape k, , , n ,則第 和 列是獨立 ...
2018-08-08 20:44 0 3273 推薦指數:
tf.nn.dropout函數 定義在:tensorflow/python/ops/nn_ops.py. 請參閱指南:層(contrib)>用於構建神經網絡層的高級操作,神經網絡>激活函數 該函數用於計算dropout. 使用概率keep_prob,輸出 ...
A quick glance through tensorflow/python/layers/core.py and tensorflow/python/ops/nn_ops.pyreveals that tf.layers.dropout is a wrapper ...
sample output ...
一:適用范圍: tf.nn.dropout是TensorFlow里面為了防止或減輕過擬合而使用的函數,它一般用在全連接層 二:原理: dropout就是在不同的訓練過程中隨機扔掉一部分神經元。也就是讓某個神經元的激活值以一定的概率p,讓其停止工作,這次訓練過程中不更新權值,也不參加 ...
官方的接口是這樣的 tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 根據給出的keep_prob參數,將輸入tensor x按比例輸出。 默認情況下, 每個元素保存或丟棄都是獨立的。 x ...
官方的接口是這樣的 tf.nn.dropout(x, keep_prob, noise_shape=None, seed=None, name=None) 根據給出的keep_prob參數,將輸入tensor x按比例輸出。 默認情況下, 每個元素保存或丟棄都是獨立的。后面這段沒太懂,以后 ...
方法定義 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None) 參數: input: 輸入的要做 ...
函數:tf.nn.sparse_softmax_cross_entropy_with_logits(_sentinel=None,labels=None,logits=None,name=None) #如果遇到這個問題:Rank mismatch: Rank of labels ...