tf.nn.dropout(x,keep_prob,noise_shape=None,seed=None,name=None)
參數:
x:一個浮點型Tensor.
keep_prob:一個標量Tensor,它與x具有相同類型.保留每個元素的概率.
noise_shape:類型為int32的1維Tensor,表示隨機產生的保持/丟棄標志的形狀.
seed:一個Python整數.用於創建隨機種子.
name:此操作的名稱(可選).
返回:
該函數返回與x具有相同形狀的Tensor.
該函數使x的一部分(概率大約為keep_prob)變為0,其余變為x/keep_prob,
noise_shape可以使得矩陣x一部分行全為0或者部分列全為0
sample
with tf.Session() as sess:
d = tf.to_float(tf.reshape(tf.range(1,17),[4,4]))
sess.run(tf.global_variables_initializer())
print(sess.run(tf.shape(d)))
print(sess.run(d[0]))
# 矩陣有一半左右的元素變為element/0.5,其余為0
dropout_a44 = tf.nn.dropout(d, 0.5, noise_shape = None)
result_dropout_a44 = sess.run(dropout_a44)
print(result_dropout_a44)
# 行大小相同4,行同為0,或同不為0
dropout_a41 = tf.nn.dropout(d, 0.5, noise_shape = [4,1])
result_dropout_a41 = sess.run(dropout_a41)
print(result_dropout_a41)
# 列大小相同4,列同為0,或同不為0
dropout_a24 = tf.nn.dropout(d, 0.5, noise_shape = [1,4])
result_dropout_a24 = sess.run(dropout_a24)
print(result_dropout_a24)
#不相等的noise_shape只能為1
output
[[ 0. 4. 0. 8.]
[10. 12. 14. 0.]
[ 0. 20. 22. 0.]
[26. 28. 30. 32.]]
[[ 2. 4. 6. 8.]
[10. 12. 14. 16.]
[18. 20. 22. 24.]
[ 0. 0. 0. 0.]]
[[ 0. 0. 6. 0.]
[ 0. 0. 14. 0.]
[ 0. 0. 22. 0.]
[ 0. 0. 30. 0.]]