原文:拉格朗日插值公式

拉格朗日插值公式 背公式吧,沒什么好說的了。。。 假裝 P 是一個關於 x 的 n 次多項式,我們已經知道了 P i ,i in ,n 的值。 P x sum i n n i P i frac x x x ... x n n i i x i 上面這個東西是拉格朗日插值公式的特殊情況。 一般情況下是任意的 n 個給定的點 x i 以及值 P x i 丟下公式就跑 P x sum i n P x i ...

2018-07-30 19:49 0 854 推薦指數:

查看詳情

淺談插值公式

日差值公式插值法 在數值分析中,插值法是以法國十八世紀數學家約瑟夫,命名的一種多項式差值方法。——百度百科 為什么學它? 在oi中,可以 水 這道題 ...

Tue Dec 24 01:41:00 CST 2019 2 1083
插值

插值 很久很久以前,有一個人叫,他發現了插值,可以求出給出函數 \(f(x)\) 的 \(n+1\) 個點,求出這個函數 \(f(x)\) 的值。 推論: 根據某些定理可知: \(f(x)\equiv f(a)\bmod(x-a)\) 那么我們就可以 ...

Sat Oct 16 03:21:00 CST 2021 0 143
插值

的方法,其中比較普及的就是插值。 二,定義    對某個多項式函數,已知有給定的k + ...

Mon Mar 26 00:21:00 CST 2018 0 2315
插值

本文部分轉載自: 知乎 中文維基 有何用 板子:給出平面上n+1個點,求一條穿過這n+1個點的n次多項式,或這個多項式在另一個點處的值。 顯然可以高斯消元求出每一項系數,然后輸出/直接爆算。 其實插值有兩種:朴素的,和重心插值。一般情況下,朴素的和高斯消元在求解第1問時 ...

Wed Oct 16 02:14:00 CST 2019 0 469
插值&&快速插值

插值 插值真慘 眾所周知$k+1$個點可以確定一個$k$次多項式,那么插值就是通過點值還原多項式的過程。 設給出的$k+1$個點分別是$(x_0,y_0),(x_1,y_1),...,(x_k,y_k)$,那么xjb構造一下: 設函數$f_i(x)=\frac{\prod ...

Fri Sep 28 05:06:00 CST 2018 0 1049
插值的應用

引言: 什么是插值?假設我們現在有三個點 \((x_1,y_1),(x_2,y_2),(x_3,y_3)\),現在我們要找一條唯一的二次曲線剛好經過這三個點。 給出了一個絕妙的方法,他把我們要求的曲線的表達式等同於三個函數的累加。具體是這么操作的: 第一個函數保證\(f_1 ...

Sat Jan 25 01:14:00 CST 2020 0 728
淺談插值

淺談插值 在數值分析中,插值法是以法國十八世紀數學家約瑟夫·命名的一種多項式插值方法。許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。這樣的多項式稱為 ...

Thu Jun 20 05:04:00 CST 2019 4 2686
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM