轉載: (1) https://zhuanlan.zhihu.com/p/51200626 (2) 菊安醬的機器學習第三期 (3) 代碼來自:https://github.co ...
調用自己寫的朴素貝葉斯函數正確率是 . ,調用sklearn中的BernoulliNB函數,正確率是 . 調用sklearn中的BernoulliNB函數的代碼如下: 結果截屏: 優化:加入主成分分析方法,進行降維操作,代碼如下: 結果截屏: 待修改中 參考鏈接 https: blog.csdn.net wds sdo article details ...
2018-07-28 17:00 0 1662 推薦指數:
轉載: (1) https://zhuanlan.zhihu.com/p/51200626 (2) 菊安醬的機器學習第三期 (3) 代碼來自:https://github.co ...
注:本人純粹為了練手熟悉各個方法的用法 使用高斯朴素貝葉斯對鳶尾花數據進行分類 代碼: 圖片顯示: 正確率: ...
先上問題吧,我們統計了14天的氣象數據(指標包括outlook,temperature,humidity,windy),並已知這些天氣是否打球(play)。如果給出新一天的氣象指標數據:sunny,cool,high,TRUE,判斷一下會不會去打球。 table ...
1.算法思想——基於概率的預測 貝葉斯決策論是概率框架下實施決策的基本方法。對分類任務來說,在所有相關概率都已知的情況下,貝葉斯決策論考慮如何基於這些概率和誤判損失來選擇最優的標記類別。 2. 理論基礎 2.1 貝葉斯定理 這個定理解決了現實生活中經常遇到的問題:已知某條件概率,如何得到兩個時間 ...
一、概率基礎 概率定義:概率定義為一件事情發生的可能性,例如,隨機拋硬幣,正面朝上的概率。 聯合概率:包含多個條件,且所有條 ...
1.公式 上式中左邊D是需要預測的測試數據屬性,h是需要預測的類;右邊式子分子是屬性的條件概率和類別的先驗概率,可以從統計訓練數據中得到,分母對於所有實例都一樣,可以不考慮,所有只需 ,返回最大概率的那個類別。但是如果測試數據中沒有那個屬性,整個預測概率會是0;此外,此式針對離散型屬性進行 ...
寫在前面的話: 我現在大四,畢業設計是做一個基於大數據的用戶畫像研究分析。所以開始學習數據挖掘的相關技術。這是我學習的一個新技術領域,學習難度比我以往學過的所有技術都難。雖然現在在一家公司實習,但是工作還是挺忙的,經常要加班,無論工作多忙,還是決定要寫一個專欄,這個專欄就寫一些數據挖掘算法 ...
朴素貝葉斯和情感分類 分類問題在人類和機器智能中廣泛應用:郵件分類、作業打分等。這篇博客介紹了朴素貝葉斯方法及其在文本分類方面的應用。其中文本分類的例子采用情感分析,就是從文本中進行情感抽取,並判斷作者對特定事物的態度是積極還是消極,例如影評和書評的分析。情感分析中最簡單的任務是二分類任務,文字 ...