原理 word2vec的大概思想是,認為,距離越近的詞,相關性就越高,越能夠表征這個詞。所以,只需要把所有的條件概率\(P(w_{t+j}|w_t)\)最大化,這樣就能夠得到一個很好的用來表征詞語之間關系的模型了。 最大化的方法就是使用最大似然估計,構建損失函數,然后使用梯度下降進行優化 ...
年,Google開源了一款用於詞向量計算的工具 word vec,引起了工業界和學術界的關注。首先,word vec可以在百萬數量級的詞典和上億的數據集上進行高效地訓練 其次,該工具得到的訓練結果 詞向量 word embedding ,可以很好地度量詞與詞之間的相似性。隨着深度學習 Deep Learning 在自然語言處理中應用的普及,很多人誤以為word vec是一種深度學習算法。其實wo ...
2018-06-28 19:29 6 74631 推薦指數:
原理 word2vec的大概思想是,認為,距離越近的詞,相關性就越高,越能夠表征這個詞。所以,只需要把所有的條件概率\(P(w_{t+j}|w_t)\)最大化,這樣就能夠得到一個很好的用來表征詞語之間關系的模型了。 最大化的方法就是使用最大似然估計,構建損失函數,然后使用梯度下降進行優化 ...
Gensim是一款開源的第三方Python工具包,用於從原始的非結構化的文本中,無監督地學習到文本隱層的主題向量表達。它支持包括TF-IDF,LSA,LDA,和word2vec在內的多種主題模型算法,支持流式訓練,並提供了諸如相似度計算,信息檢索等一些常用任務的API接口。 1、實現類 ...
轉載自 https://zhuanlan.zhihu.com/p/61635013 一、什么是Word2Vec Word2Vec是google在2013年推出的一個NLP工具,它的特點是能夠將單詞轉化為向量來表示,這樣詞與詞之間就可以定量的去度量他們之間的關系,挖掘詞之間的聯系。用詞向量 ...
在NLP(自然語言處理)領域,文本表示是第一步,也是很重要的一步,通俗來說就是把人類的語言符號轉化為機器能夠進行計算的數字,因為普通的文本語言機器是看不懂的,必須通過轉化來表征對應文本。早期是基於規則的方法進行轉化,而現代的方法是基於統計機器學習的方法。 數據決定了機器學習的上限,而算法只是盡可 ...
用gensim函數庫訓練Word2Vec模型有很多配置參數。這里對gensim文檔的Word2Vec函數的參數說明進行翻譯,以便不時之需。 class gensim.models.word2vec.Word2Vec(sentences=None,size=100,alpha=0.025 ...
word2vec簡介 word2vec是把一個詞轉換為向量,變為一個數值型的數據。 主要包括兩個思想:分詞和負采樣 使用gensim庫——這個庫里封裝好了word2vector模型,然后用它訓練一個非常龐大的數據量。 自然語言處理的應用 拼寫檢查——P(fiften minutes ...
有感於最近接觸到的一些關於深度學習的知識,遂打算找個東西來加深理解。首選的就是以前有過接觸,且火爆程度非同一般的word2vec。嚴格來說,word2vec的三層模型還不能算是完整意義上的深度學習,本人確實也是學術能力有限,就以此為例子,打算更全面的了解一下這個工具。在此期間,參考 ...
一、Word2vec word2vec是Google與2013年開源推出的一個用於獲取word vecter的工具包,利用神經網絡為單詞尋找一個連續向量看空間中的表示。word2vec是將單詞轉換為向量的算法,該算法使得具有相似含義的單詞表示為相互靠近的向量。 此外,它能讓我們使用向量算法來處 ...