1. 平方損失函數 Square Error: $$L(f(x),y)=(f(x)-y)^{2}$$ 這時經驗風險函數是MSE,例如在線性回歸中出現 2. 絕對值損失函數: $$L(f(x),y)=\vert f(x)-y\vert ...
最近太忙已經好久沒有寫博客了,今天整理分享一篇關於損失函數的文章吧,以前對損失函數的理解不夠深入,沒有真正理解每個損失函數的特點以及應用范圍,如果文中有任何錯誤,請各位朋友指教,謝謝 損失函數 loss function 是用來估量模型的預測值f x 與真實值Y的不一致程度,它是一個非負實值函數,通常使用L Y, f x 來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分 ...
2018-06-23 14:46 0 50185 推薦指數:
1. 平方損失函數 Square Error: $$L(f(x),y)=(f(x)-y)^{2}$$ 這時經驗風險函數是MSE,例如在線性回歸中出現 2. 絕對值損失函數: $$L(f(x),y)=\vert f(x)-y\vert ...
損失函數(Loss/Error Function): 計算單個訓練集的誤差,例如:歐氏距離,交叉熵,對比損失,合頁損失 代價函數(Cost Function): 計算整個訓練集所有損失之和的平均值 至於目標函數(Objective function),字面一些,就是有某個(最優 ...
,而且會得出錯誤的結論。 最近恰好在做文本分類的工作,所以把機器學習分類任務的評價指標又過了一遍。本文將 ...
信息熵 信息熵也被稱為熵,用來表示所有信息量的期望。 公式如下: 例如在一個三分類問題中,貓狗馬的概率如下: label 貓 狗 馬 ...
分類損失函數 一、LogLoss對數損失函數(邏輯回歸,交叉熵損失) 有些人可能覺得邏輯回歸的損失函數就是平方損失,其實並不是。平方損失函數可以通過線性回歸在假設樣本是高斯分布的條件下推導得到,而邏輯回歸得到的並不是平方損失。在邏輯回歸的推導中,它假設樣本服從伯努利分布 ...
機器學習常用損失函數 轉載自:機器學習常用損失函數小結 - 王桂波的文章 - 知乎 https://zhuanlan.zhihu.com/p/776861188 1.Loss Function、Cost Function 和 Objective Function 的區別和聯系 損失 ...
前言 在監督式機器學習中,無論是回歸問題還是分類問題,都少不了使用損失函數(Loss Function)。**損失函數(Loss Function)**是用來估量模型的預測值 f(x) 與真實值 y 的不一致程度。 若損失函數很小,表明機器學習模型與數據真實分布很接近,則模型性能良好;若損失 ...
在這篇文章中,數據科學家與分析師 Vincent Granville 明晰了數據科學家所具有的不同角色,以及數據科學與機器學習、深度學習、人工智能、統計學等領域的區別。這些概念的區別也一直是人工智能領域熱烈討論的一個話題,Quora、多個技術博客都曾有過解答。機器之心之前編譯的一篇 ...