初步理解一下:對於一組輸入,根據這個輸入,輸出有多種可能性,需要計算每一種輸出的可能性,以可能性最大的那個輸出作為這個輸入對應的輸出。 那么,如何來解決這個問題呢? 貝葉斯給出了另一個思路。根據歷史記錄來進行判斷。 思路是這樣的: 1、根據貝葉斯公式:P(輸出|輸入)=P(輸入|輸出)*P ...
朴素貝葉斯 算法介紹: 朴素貝葉斯法是基於貝葉斯定理與特征條件獨立假設的分類方法。 朴素貝葉斯的思想基礎是這樣的:對於給出的待分類項,求解在此項出現的條件下各個類別出現的概率,在沒有其它可用信息下,我們會選擇條件概率最大的類別作為此待分類項應屬的類別。 朴素貝葉斯分類的正式定義如下: 設為一個待分類項,而每個a為x的一個特征屬性。 有類別集合。 計算。 如果,則。 那么現在的關鍵就是如何計算第 步 ...
2018-06-12 13:53 0 1209 推薦指數:
初步理解一下:對於一組輸入,根據這個輸入,輸出有多種可能性,需要計算每一種輸出的可能性,以可能性最大的那個輸出作為這個輸入對應的輸出。 那么,如何來解決這個問題呢? 貝葉斯給出了另一個思路。根據歷史記錄來進行判斷。 思路是這樣的: 1、根據貝葉斯公式:P(輸出|輸入)=P(輸入|輸出)*P ...
轉載請注明出處:http://www.cnblogs.com/marc01in/p/4775440.html 引 和師弟師妹聊天時經常提及,若有志於從事數據挖掘、機器學習方面的工作,在大學階 ...
貝葉斯的應用 過濾垃圾郵件 貝葉斯分類器的著名的應用就是垃圾郵件過濾了,這方面推薦想詳細了解的可以去看看《黑客與畫家》或是《數學之美》中對應的章節,貝葉斯的基礎實現看這里 數據集 兩個文件夾,分別是正常郵件和垃圾郵件,其中各有25封郵件 測試方法 從50封郵件中隨機選取10封 ...
朴素貝葉斯算法簡單高效,在處理分類問題上,是應該首先考慮的方法之一。 1、准備知識 貝葉斯分類是一類分類算法的總稱,這類算法均以貝葉斯定理為基礎,故統稱為貝葉斯分類。 這個定理解決了現實生活里經常遇到的問題:已知某條件概率,如何得到兩個事件交換后的概率,也就是在已知P(A|B)的情況下 ...
一個簡單的例子 朴素貝葉斯算法是一個典型的統計學習方法,主要理論基礎就是一個貝葉斯公式,貝葉斯公式的基本定義如下: 這個公式雖然看上去簡單,但它卻能總結歷史,預知未來。公式的右邊是總結歷史,公式的左邊是預知未來,如果把Y看出類別,X看出特征,P(Yk|X)就是在已知特征X ...
1.貝葉斯定理 設X是數據元組。在貝葉斯的術語中,X看做是證據。通常,X用n個屬性集的測量值描述。令H為某種假設,如數據元組X屬於某個特定類C。對於分類問題,希望確定給定證據或者觀測數據元組X,假設H成立的概率為P(H|X)。換言之,給定X的屬性描述,找出元組X屬於類C的概率 ...
在所有的機器學習分類算法中,朴素貝葉斯和其他絕大多數的分類算法都不同。對於大多數的分類算法,比如決策樹,KNN,邏輯回歸,支持向量機等,他們都是判別方法,也就是直接學習出特征輸出Y和特征X之間的關系,要么是決策函數$Y=f(X)$,要么是條件分布$P(Y|X)$。但是朴素貝葉斯卻是生成 ...
朴素貝葉斯是一種十分簡單的分類算法,稱其朴素是因為其思想基礎的簡單性,就文本分類而言,他認為詞袋中的兩兩詞之間的關系是相互獨立的,即一個對象的特征向量中的每個維度都是互相獨立的。這是朴素貝葉斯理論的思想基礎。 朴素貝葉斯分類的正式定義: 設x={}為一個待分類項,而每個a為x的一個特征 ...