1. 背景: 1.1 以人腦中的神經網絡為啟發,歷史上出現過很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多層向前神經網絡(Multilayer Feed-Forward Neural Network ...
在神經網絡中,廣泛的使用反向傳播和梯度下降算法調整神經網絡中參數的取值。 梯度下降和學習率: 假設用 來表示神經網絡中的參數, J 表示在給定參數下訓練數據集上損失函數的大小。 那么整個優化過程就是尋找一個參數 , 使得J 的值最小, 也就是求J 的最小值 損失函數J 的梯度 J 此時定義一個學習率 梯度下降法更新參數的公式為: n n J n n 將這個公式循環的重復下去, 的值就從高處逐漸向 ...
2018-06-07 16:31 0 942 推薦指數:
1. 背景: 1.1 以人腦中的神經網絡為啟發,歷史上出現過很多不同版本 1.2 最著名的算法是1980年的 backpropagation 2. 多層向前神經網絡(Multilayer Feed-Forward Neural Network ...
神經網絡是深度學習的基礎,上節提到由LR能夠聯系到神經網絡,本節就對神經網絡和BP算法進行一個回顧和總結。 1.由LR到神經網絡 前面在邏輯回歸的文章末尾提到,當樣本是線性不可分時,需要對樣本數據進行轉換,轉換過后在進行分類,那么轉換的這個步驟就成為特征的提取的過程,結構如圖所示 ...
神經網絡算法以及Tensorflow的實現 一、多層向前神經網絡(Multilayer Feed-Forward Neural Network) 多層向前神經網絡由三部分組成:輸入層(input layer), 隱藏層 (hidden layers), 輸入層 (output ...
1.標准卷積神經網絡 標准的卷積神經網絡由輸入層、卷積層(convolutional layer)、下采樣層(downsampling layer)、全連接層(fully—connected layer)和輸出層構成。 卷積層也稱為檢測層 下采樣層也稱為池化層(pooling ...
先來說一下這幾者之間的關系:人工智能包含機器學習,機器學習包含深度學習(是其中比較重要的分支)。深度學習源自於人工神經網絡的研究,但是並不完全等於傳統神經網絡。所以深度學習可以說是在傳統神經網絡基礎上的升級。神經網絡一般有輸入層->隱藏層->輸出層,一般來說隱藏層大於2的神經網絡 ...
學習方式 根據數據類型的不同,對一個問題的建模有不同的方式。在機器學習或者人工智能領域,人們首先會考慮算法的學習方式。在機器學習領域,有幾種主要的學習方式。將算法按照學習方式分類是一個不錯的想法,這樣可以讓人們在建模和算法選擇的時候考慮能根據輸入數據來選擇最合適的算法來獲得最好 ...
1、什么是人工神經網絡(ANN) 人工神經網絡的靈感來自其生物學對應物。生物神經網絡使大腦能夠以復雜的方式處理大量信息。大腦的生物神經網絡由大約1000億個神經元組成,這是大腦的基本處理單元。神經元通過彼此之間巨大的連接(稱為突觸)來執行其功能。人腦大約有100萬億個突觸,每個神經 ...
學習方式 根據數據類型的不同,對一個問題的建模有不同的方式。在機器學習或者人工智能領域,人們首先會考慮算法的學習方式。在機器學習領域,有幾種主要的學習方式。將算法按照學習方式分類是一個不錯的想法,這樣可以讓人們在建模和算法選擇的時候考慮能根據輸入數據來選擇最合適的算法來獲得最好 ...