本文始發於個人公眾號:TechFlow,原創不易,求個關注 今天這篇文章和大家聊聊機器學習領域的熵。 我在看paper的時候發現對於交叉熵的理解又有些遺忘,復習了一下之后,又有了一些新的認識。故寫下本文和大家分享。 熵這個概念應用非常廣泛,我個人認為比較經典的一個應用是在熱力學當中,反應 ...
經典的損失函數 交叉熵 交叉熵: 分類問題中使用比較廣泛的一種損失函數, 它刻畫兩個概率分布之間的距離 給定兩個概率分布p和q, 交叉熵為: H p, q p x log q x 當事件總數是一定的時候, 概率函數滿足: 任意x p X x , 且 p X x 也就是說 所有時間發生的概率都是 到 之間 , 且總有一個時間會發生,概率的和就為 。 tensorflow中softmax: soft ...
2018-06-06 16:02 0 1934 推薦指數:
本文始發於個人公眾號:TechFlow,原創不易,求個關注 今天這篇文章和大家聊聊機器學習領域的熵。 我在看paper的時候發現對於交叉熵的理解又有些遺忘,復習了一下之后,又有了一些新的認識。故寫下本文和大家分享。 熵這個概念應用非常廣泛,我個人認為比較經典的一個應用是在熱力學當中,反應 ...
1. softmax層的作用 通過神經網絡解決多分類問題時,最常用的一種方式就是在最后一層設置n個輸出節點,無論在淺層神經網絡還是在CNN中都是如此,比如,在AlexNet中最后的輸出層有1000個節點,即便是ResNet取消了全連接層,但1000個節點的輸出層還在。 一般情況下 ...
SoftMax回歸 對於MNIST中的每個圖像都是零到九之間的手寫數字。所以給定的圖像只能有十個可能的東西。我們希望能夠看到一個圖像,並給出它是每個數字的概率。 例如,我們的模型可能會看到一個九分之一的圖片,80%的人肯定它是一個九,但是給它一個5%的幾率是八分之一(因為頂級循環),並有一點 ...
git: https://github.com/linyi0604/MachineLearning/tree/master/07_tensorflow/ ...
之所以會有這個問題,是因為在學習 logistic regression 時,《統計機器學習》一書說它的負對數似然函數是凸函數,而 logistic regression 的負對數似然函數(negative log likelihood)和 交叉熵函數(cross entropy)具有一樣的形式 ...
深度學習中,交叉熵損失函數為什么優於均方差損失函數 一、總結 一句話總結: A)、原因在於交叉熵函數配合輸出層的激活函數如sigmoid或softmax函數能更快地加速深度學習的訓練速度 B)、因為反向傳播過程中交叉熵損失函數得到的結果更加簡潔,無論sigmoid或softmax,可以定 ...
代碼倉庫: https://github.com/brandonlyg/cute-dl 目標 增加交叉熵損失函數,使框架能夠支持分類任務的模型。 構建一個MLP模型, 在mnist數據集上執行分類任務准確率達到91%。 實現交叉熵損失函數 數學原理 分解交叉熵損失函數 ...
0x00 概要 邏輯回歸(logistic regression)在機器學習中是非常經典的分類方法,周志華教授的《機器學習》書中稱其為對數幾率回歸,因為其屬於對數線性模型。 在算法面試中,邏輯回歸也經常被問到,常見的面試題包括: 邏輯回歸推導; 邏輯回歸如何實現多分類? SVM ...