GridSearchCV,它存在的意義就是自動調參,只要把參數輸進去,就能給出最優化的結果和參數。但是這個方法適合於小數據集,一旦數據的量級上去了,很難得出結果。這個時候就是需要動腦筋了。數據量比較大的時候可以使用一個快速調優的方法——坐標下降。它其實是一種貪心算法:拿當前對模型影響最大的參數調優 ...
git:https: github.com linyi MachineLearning ...
2018-05-07 09:21 0 1335 推薦指數:
GridSearchCV,它存在的意義就是自動調參,只要把參數輸進去,就能給出最優化的結果和參數。但是這個方法適合於小數據集,一旦數據的量級上去了,很難得出結果。這個時候就是需要動腦筋了。數據量比較大的時候可以使用一個快速調優的方法——坐標下降。它其實是一種貪心算法:拿當前對模型影響最大的參數調優 ...
機器學習算法中有兩類參數:從訓練集中學習到的參數,比如邏輯斯蒂回歸中的權重參數,另一類是模型的超參數,也就是需要人工設定的參數,比如正則項系數或者決策樹的深度。 前一節,我們使用驗證曲線來提高模型的性能,實際上就是找最優參數。這一節我們學習另一種常用的超參數尋優算法:網格搜索(grid ...
在機器學習模型中,需要人工選擇的參數稱為超參數。比如隨機森林中決策樹的個數,人工神經網絡模型中隱藏層層數和每層的節點個數,正則項中常數大小等等,他們都需要事先指定。超參數選擇不恰當,就會出現欠擬合或者過擬合的問題。而在選擇超參數的時候,有兩個途徑,一個是憑經驗微調,另一個就是選擇不同大小的參數 ...
微調后: Best score: 0.983Best parameters set: clf__C: 10 clf__penalty: 'l2' vect__max_df: 0.5 v ...
解學習如何使用GridSearchCV找到模型超參數的最佳值。 1.什么是GridSerchCV? ...
在日常模型訓練過程中,模型有多種選擇,模型的參數同樣也有多種選擇,如何根據同一批數據選出最適合的模型和參數呢? 一般情況下,模型還比較好選擇,是選用機器學習中分類模型例如 LR、SVM或XGBoost等,還是使用深度學習模型CNN、LSTM等。但是參數的選擇就讓人很頭疼,每個模型都有一堆參數 ...
一、scikit-learn庫中的網格搜索調參 1)網格搜索的目的: 找到最佳分類器及其參數; 2)網格搜索的步驟: 得到原始數據 切分原始數據 創建/調用機器學習算法對象 調用並實例化scikit-learn中的網格搜索對象 對網格搜索 ...