先說一個小知識,助於理解代碼中各個層之間維度是怎么變換的。 卷積函數:一般只用來改變輸入數據的維度,例如3維到16維。 Conv2d() 一個小例子: 卷積神經網絡實戰之Lenet5: 下面放一個示例圖,代碼中的過程就是根據示例圖進行 ...
原文作者:aircraft 原文地址:https: www.cnblogs.com DOMLX p .html 深度學習教程目錄如下,還在繼續更新完善中 深度學習系列教程目錄 參考博客:https: blog.csdn.net u article details https: blog.csdn.net u article details 目前人工智能神經網絡已經成為非常火的一門技術,今天就用t ...
2018-04-26 20:33 0 3029 推薦指數:
先說一個小知識,助於理解代碼中各個層之間維度是怎么變換的。 卷積函數:一般只用來改變輸入數據的維度,例如3維到16維。 Conv2d() 一個小例子: 卷積神經網絡實戰之Lenet5: 下面放一個示例圖,代碼中的過程就是根據示例圖進行 ...
基礎概念: 卷積神經網絡(CNN):屬於人工神經網絡的一種,它的權值共享的網絡結構顯著降低了模型的復雜度,減少了權值的數量。卷積神經網絡不像傳統的識別算法一樣,需要對數據進行特征提取和數據重建,可以直接將圖片作為網絡的輸入,自動提取特征,並且對圖形的變形等具有高度不變形。在語音分析和圖像識別 ...
轉自:http://blog.csdn.net/cxmscb/article/details/71023576 一、CNN的引入 在人工的全連接神經網絡中,每相鄰兩層之間的每個神經元之間都是有邊相連的。當輸入層的特征維度變得很高時,這時全連接網絡需要訓練的參數就會增大很多,計算速度就會變得 ...
原文地址:http://blog.csdn.net/hjimce/article/details/47323463 作者:hjimce 卷積神經網絡算法是n年前就有的算法,只是近年來因為深度學習相關算法為多層網絡的訓練提供了新方法,然后現在電腦的計算能力已非 ...
Convolutional Networks 轉載請注明作者:夢里風林 Github工程地址:https://github.com/ahangchen/GDLnotes 歡迎star,有問題可以 ...
深度學習之卷積神經網絡CNN及tensorflow代碼實例 什么是卷積? 卷積的定義 從數學上講,卷積就是一種運算,是我們學習高等數學之后,新接觸的一種運算,因為涉及到積分、級數,所以看起來覺得很復雜 ...
本文介紹以下幾個CNN經典模型:Lenet(1986年)、Alexnet(2012年)、GoogleNet(2014年)、VGG(2014年)、Deep Residual Learning(2015年) 1.LeNet-5 Lenet-5是一個經典的CNN網絡模型,幾乎所有講 ...
開局一張圖,內容全靠編。 上圖引用自 【卷積神經網絡-進化史】從LeNet到AlexNet. 目前常用的卷積神經網絡 深度學習現在是百花齊放,各種網絡結構層出不窮,計划梳理下各個常用的卷積神經網絡結構。 目前先梳理下用於圖像分類的卷積神經網絡 LeNet AlexNet ...