深度學習中常用的優化器簡介 SGD mini-batch SGD 是最基礎的優化方法,是后續改良方法的基礎。下式給出SGD的更新公式 \[\theta_t = \theta_{t-1} - \alpha\nabla_\theta J(\theta) \] 其中\(\alpha ...
附python代碼如下: 原始的pdf文檔如果需要可以在https: pan.baidu.com s GhGu c RVmKj hb bje Eg下載. ...
2018-04-25 10:40 0 1070 推薦指數:
深度學習中常用的優化器簡介 SGD mini-batch SGD 是最基礎的優化方法,是后續改良方法的基礎。下式給出SGD的更新公式 \[\theta_t = \theta_{t-1} - \alpha\nabla_\theta J(\theta) \] 其中\(\alpha ...
摘要: 1.概述 2.激活函數與導數 3.激活函數對比 4.參考鏈接 內容: 1.概述 深度學習的基本原理是基於人工神經網絡,信號從一個神經元進入,經過非線性的activation function,傳入到下一層神經元;再經過該層神經元的activate,繼續 ...
梯度下降算法 梯度下降的框架主要分三種:1,全量梯度下降。每次使用全部的樣本來更新模型參數,優點是收斂方向准確,缺點是收斂速度慢,內存消耗大。2,隨機梯度下降。每次使用一個樣本來更新模型參數,優點是學習速度快,缺點是收斂不穩定。3,批量梯度下降。每次使用一個batchsize的樣本來更新模型參數 ...
https://nndl.github.io/ch5.pdf 見5.4節 ...
關於深度學習的優化方法(On Optimization Methods for Deep Learning) 摘要 在訓練深度學習時我們的主要方法是隨機梯度下降法(stochastic gradient descent methods , SGDs)。盡管它易於實現,但SGDs調整困難 ...
,最后能夠保證收斂於極值點(凸函數收斂於全局極值點,非凸函數可能會收斂於局部極值點) 缺點:每次學習時間過 ...
SGD SGD是深度學習中最常見的優化方法之一,雖然是最常使用的優化方法,但是卻有不少常見的問題。 learning rate不易確定,如果選擇過小的話,收斂速度會很慢,如果太大,loss function就會在極小值處不停的震盪甚至偏離。每個參數的learning rate都是相同 ...
Deep Learning的常用模型或者方法 1、AutoEncoder自動編碼器 Deep Learning最簡單的一種方法是利用人工神經網絡的特點,人工神經網絡(ANN)本身就是具有層次結構的系統,如果給定一個神經網絡,我們假設其輸出與輸入是相同的,然后訓練調整其參數 ...