1.貝葉斯法則機器學習的任務:在給定訓練數據D時,確定假設空間H中的最佳假設。最佳假設:一種方法是把它定義為在給定數據D以及H中不同假設的先驗概率的有關知識下的最可能假設。貝葉斯理論提供了一種計算假設概率的方法,基於假設的先驗概率、給定假設下觀察到不同數據的概率以及觀察到的數據本身。2.先驗概率 ...
貝葉斯推斷之最大后驗概率 MAP 本文詳細記錄貝葉斯后驗概率分布的數學原理,基於貝葉斯后驗概率實現一個二分類問題,談談我對貝葉斯推斷的理解。 . 二分類問題 給定N個樣本的數據集,用 X 來表示,每個樣本 x n 有兩個屬性,最終屬於某個分類 t t left , right mathbf x n begin pmatrix x n x n end pmatrix , 假設模型參數 w begin ...
2018-04-14 20:04 9 3008 推薦指數:
1.貝葉斯法則機器學習的任務:在給定訓練數據D時,確定假設空間H中的最佳假設。最佳假設:一種方法是把它定義為在給定數據D以及H中不同假設的先驗概率的有關知識下的最可能假設。貝葉斯理論提供了一種計算假設概率的方法,基於假設的先驗概率、給定假設下觀察到不同數據的概率以及觀察到的數據本身。2.先驗概率 ...
1, 頻率派思想 頻率派思想認為概率乃事情發生的頻率,概率是一固定常量,是固定不變的 2, 最大似然估計 假設有100個水果由蘋果和梨混在一起,具體分配比例未知,於是你去隨機抽取10次,抽到蘋果標記為1, 抽到梨標記為0,每次標記之后將抽到的水果放回 最終統計的結果如下: 蘋果 8次,梨 ...
,例如極大似然估計、最大后驗估計、貝葉斯推斷、最大熵估計,等等。雖然方法各不相同,但實際上背后的道理大體一樣。 ...
最大似然估計(Maximum likelihood estimation, 簡稱MLE)和最大后驗概率估計(Maximum aposteriori estimation, 簡稱MAP)是很常用的兩種參數估計方法。 1、最大似然估計(MLE) 在已知試驗結果(即是樣本)的情況下 ...
貝葉斯估計、最大似然估計(MLE)、最大后驗概率估計(MAP)這幾個概念在機器學習和深度學習中經常碰到,讀文章的時候還感覺挺明白,但獨立思考時經常會傻傻分不清楚(😭),因此希望通過本文對其進行總結。 2. 背景知識 注:由於概率 ...
全部定義 邊際似然 marginal likelihood (ML) 邊際似然計算算法實例 《Marginal likelihood calculation with M ...
問題:這些估計都是干嘛用的?它們存在的意義的是什么? 有一個受損的骰子,看起來它和正常的骰子一樣,但實際上因為受損導致各個結果出現的概率不再是均勻的 \(\frac{1}{6}\) 了。我們想知道這個受損的骰子各個結果出現的實際概率。准確的實際概率我們可能永遠無法精確的表示出 ...
機器學習基礎 目錄 機器學習基礎 1. 概率和統計 2. 先驗概率(由歷史求因) 3. 后驗概率(知果求因) 4. 似然函數(由因求果) 5. 有趣的野史--貝葉斯和似然之爭-最大似然概率(MLE)-最大后驗概率(MAE ...