原文:皮爾遜殘差 | Pearson residual

參考:Pearson Residuals 這些概念到底是寫什么 怎么產生的 統計學功力太弱了 ...

2018-04-12 16:26 0 1310 推薦指數:

查看詳情

網絡(Residual Network)

一、背景 1)梯度消失問題 我們發現很深的網絡層,由於參數初始化一般更靠近0,這樣在訓練的過程中更新淺層網絡的參數時,很容易隨着網絡的深入而導致梯度消失,淺層的參數無法更新。 可以看到,假設 ...

Mon Dec 17 03:44:00 CST 2018 0 16034
網絡(Residual Networks, ResNets)

1. 什么是residual)?   “在數理統計中是指實際觀察值與估計值(擬合值)之間的。”“如果回歸模型正確的話, 我們可以將看作誤差的觀測值。”   更准確地,假設我們想要找一個 $x$,使得 $f(x) = b$,給定一個 $x$ 的估計值 $x_0$, ...

Sat Sep 15 08:20:00 CST 2018 5 44246
深度網絡(Deep residual network, ResNet)

@ 目錄 一、前言 二、深度網絡的退化問題 三、學習 3.1 網絡原理 3.2 ResNet結構為什么可以解決深度網絡退化問題? 3.3 單元 3.4 ResNet的網絡結構 四、實驗 ...

Mon May 25 23:06:00 CST 2020 0 2510
關於深度網絡(Deep residual network, ResNet)

題外話: From 《白話深度學習與TensorFlow》 深度網絡: 深度網絡的設計就是為了克服這種由於網絡深度加深而產生的學習效率變低,准確率無法有效提升的問題(也稱為網絡退化)。 甚至在一些場景下,網絡層數的增加反而會降低正確率。這種本質問題是由於出現了信息丟失而產生的過擬合 ...

Mon Oct 22 00:48:00 CST 2018 0 10679
深度網(deep residual networks)的訓練過程

這里介紹一種深度網(deep residual networks)的訓練過程: 1、通過下面的地址下載基於python的訓練代碼: https://github.com/dnlcrl/deep-residual-networks-pyfunt 2、這些訓練代碼需要 ...

Sat Jul 30 05:52:00 CST 2016 0 2889
Deep Residual Learning for Image Recognition(網絡)

深度在神經網絡中有及其重要的作用,但越深的網絡越難訓練。 隨着深度的增加,從訓練一開始,梯度消失或梯度爆炸就會阻止收斂,normalized initialization和intermediate ...

Wed Apr 12 00:21:00 CST 2017 0 2077
深度收縮網絡 Deep Residual Shrinkage Networks for Fault Diagnosis (原文翻譯)

深度收縮網絡是深度網絡的一種改進,針對的是數據中含有噪聲或冗余信息的情況,將軟閾值函數引入深度網絡的內部,通過消除冗余特征,增強高層特征的判別性。其核心部分就是下圖所示的基本模塊: 以下對部分原文進行了翻譯,僅以學習為目的。 【題目】Deep Residual ...

Sat Mar 28 23:25:00 CST 2020 0 1799
大幅減少GPU顯存占用:可逆網絡(The Reversible Residual Network)

前序:   Google AI最新出品的論文Reformer 在ICLR 2020會議上獲得高分,論文中對當前暴熱的Transformer做兩點革新:一個是局部敏感哈希(LSH);一個是可逆網絡代替標准網絡。本文主要介紹變革的第二部分,可逆網絡。先從神經網絡的反向傳播講起,然后是標准 ...

Sun Jan 12 06:21:00 CST 2020 0 3087
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM