一.輸入層 1.用途 構建深度神經網絡輸入層,確定輸入數據的類型和樣式。 2.應用代碼 input_data = Input(name='the_input', shape=(1600, 200, 1)) 3.源碼 4.參數解析 ...
一 前述 本文講述池化層和經典神經網絡中的架構模型。 二 池化Pooling 目標 降采樣subsample,shrink 濃縮 ,減少計算負荷,減少內存使用,參數數量減少 也可防止過擬合 減少輸入圖片大小 降低了圖片的質量 也使得神經網絡可以經受一點圖片平移,不受位置的影響 池化后相當於把圖片上的點平移了 正如卷積神經網絡一樣,在池化層中的每個神經元被連接到上面一層輸出的神經元,只對應一小塊感受 ...
2018-03-28 20:29 0 2440 推薦指數:
一.輸入層 1.用途 構建深度神經網絡輸入層,確定輸入數據的類型和樣式。 2.應用代碼 input_data = Input(name='the_input', shape=(1600, 200, 1)) 3.源碼 4.參數解析 ...
卷積神經網絡(CNN)由輸入層、卷積層、激活函數、池化層、全連接層組成,即INPUT-CONV-RELU-POOL-FC (1)卷積層:用它來進行特征提取,如下: 輸入圖像是32*32*3,3是它的深度(即R、G、B),卷積層是一個5*5*3的filter(感受野),這里注意:感受野的深度 ...
/chengqiuming/article/details/80300284 一.池化 大家學過神經網絡的都知道, ...
卷積神經網絡中卷積層和池化層 https://www.cnblogs.com/wj-1314/p/9593364.html 為什么要使用卷積呢? 在傳統的神經網絡中,比如多層感知機(MLP),其輸入通常是一個特征向量,需要人工設計特征,然后將這些特征計算的值組成特征向量,在過去幾十年的經驗 ...
為什么要使用卷積呢? 在傳統的神經網絡中,比如多層感知機(MLP),其輸入通常是一個特征向量,需要人工設計特征,然后將這些特征計算的值組成特征向量,在過去幾十年的經驗來看,人工找到的特征並不是怎么好用,有時多了,有時少了,有時選擇的特征根本就不起作用(真正起作用的特征在浩瀚的未知里面)。這就 ...
卷積神經網絡(CNN)因為在圖像識別任務中大放異彩,而廣為人知,近幾年卷積神經網絡在文本處理中也有了比較好的應用。我用TextCnn來做文本分類的任務,相比TextRnn,訓練速度要快非常多,准確性也比較高。TextRnn訓練慢得像蝸牛(可能是我太沒有耐心),以至於我直接中斷了訓練,到現在我已經 ...
卷積層Conv的輸入:高為h、寬為w,卷積核的長寬均為kernel,填充為pad,步長為Stride(長寬可不同,分別計算即可),則卷積層的輸出維度為: 其中上開下閉開中括號表示向下取整。 MaxPooling層的過濾器長寬設為kernel*kernel,則池化層的輸出維度也適用於上述 ...
四、其他常見神經網絡 1、深度學習模型 感知機只包括輸入層和輸出層,只能處理線性任務,為了處理非線性任務,在輸入和輸出之間加入了隱層,隱層的目的是對數據進行加工處理傳遞給輸出層。 為了解決更為復雜的問題,我們需要提升模型的學習能力,這時要增加模型的復雜度,有兩種策略 ...