之前對線性回歸和邏輯回歸的理論部分做了較為詳細的論述,下面通過一些例子再來鞏固一下之前所學的內容。 需要說明的是,雖然我們在線性回歸中都是直接通過公式推導求出w和b的精確值,但在實際運用中基本上都會采用梯度下降法作為首選,因為用代碼表示公式會比較繁瑣,而梯度下降法只需要不斷對參數更新公式進行迭代 ...
之前對線性回歸和邏輯回歸的理論部分做了較為詳細的論述,下面通過一些例子再來鞏固一下之前所學的內容。 需要說明的是,雖然我們在線性回歸中都是直接通過公式推導求出w和b的精確值,但在實際運用中基本上都會采用梯度下降法作為首選,因為用代碼表示公式會比較繁瑣,而梯度下降法只需要不斷對參數更新公式進行迭代 ...
大體上是Ng課week2的編程作業總結,作業中給出了實現非常好(主要是正常人都能看得懂。。)的linear regression比較完整的代碼。 因為是在MATLAB/Octave環境下編程,要面對的最大的一個問題同時也是這類數學語言最大的優點就是將數據的處理全都轉換成矩陣形式,即Ng ...
一、前述 TensorFlow是谷歌基於DistBelief進行研發的第二代人工智能學習系統,其命名來源於本身的運行原理。Tensor(張量)意味着N維數組,Flow(流)意味着基於數據流圖的計算,TensorFlow為張量從流圖的一端流動到另一端計算過程。TensorFlow是將復雜的數據結構 ...
回歸分析用於分析輸入變量和輸出變量之間的一種關系,其中線性回歸是最簡單的一種。 設: Y=wX+b,現已知一組X(輸入)和Y(輸出)的值,要求出w和b的值。 舉個例子:快年底了,銷售部門要發年終獎了,銷售員小王想知道今年能拿多少年終獎,目前他大抵知道年終獎是和銷售額(特征量)掛鈎的,具體 ...
上一篇文章我們介紹的線性模型的求解,但有很多模型是非線性的,比如: 這里表示有兩個輸入,一個輸出。 現在我們已經不能采用y=ax+b的形式去定義一個函數了,我們只能知道輸入變量的數量,但不知道某個變量存在幾次方的分量,所以我們采用一個神經網絡去定義一個函數。 我們假設 ...
輸出是一個連續的數值。 模型表示 對於一個目標值,它可能受到多個特征的加權影響。例如寶可夢精靈的進化的 cp 值,它不僅受到進化前的 cp 值的影響,還可能與寶可夢的 hp 值、類型、高度以及重量相關。因此,對於寶可夢進化后的 cp 值,我們可以用如下線性公式來表示: \[y=b+ ...
回歸是統計學中最有力的工具之一。機器學習監督學習算法分為分類算法和回歸算法兩種,其實就是根據類別標簽分布類型為離散型、連續性而定義的。回歸算法用於連續型分布預測,針對的是數值型的樣本,使用回歸,可以在給定輸入的時候預測出一個數值,這是對分類方法的提升,因為這樣可以預測連續型數據而不僅僅是離散的類別 ...
前言 由於本部分內容講解資源較多,本文不做過多敘述,重點放在實際問題的應用上。 一、線性回歸 線性回歸中的線性指的是對於參數的線性的,對於樣本的特征不一定是線性的。 線性模型(矩陣形式):y=XA+e 其中:A為參數向量,y為向量,X為矩陣,e為噪聲向量。 對於線性模型 ...