命名空間:tf.nn 函數 作用 說明 sigmoid_cross_entropy_with_logits 計算 給定 logits 的S函數 交叉熵。 測量每個類別獨立且不相互排斥的離散分類任務中的概率 ...
關於categorical cross entropy 和 binary cross entropy的比較,差異一般體現在不同的分類 二分類 多分類等 任務目標,可以參考文章keras中兩種交叉熵損失函數的探討,其結合keras的API討論了兩者的計算原理和應用原理。 本文主要是介紹TF中的接口調用方式。 一 二分類交叉熵 對應的是網絡輸出單個節點,這個節點將被sigmoid處理,使用閾值分類為 ...
2018-03-14 15:38 1 3112 推薦指數:
命名空間:tf.nn 函數 作用 說明 sigmoid_cross_entropy_with_logits 計算 給定 logits 的S函數 交叉熵。 測量每個類別獨立且不相互排斥的離散分類任務中的概率 ...
經典的損失函數----交叉熵 1 交叉熵: 分類問題中使用比較廣泛的一種損失函數, 它刻畫兩個概率分布之間的距離 給定兩個概率分布p和q, 交叉熵為: H(p, q) = -∑ p(x) log q(x) 當事件總數是一定的時候, 概率函數滿足: 任意x p(X ...
多分類問題的交叉熵 在多分類問題中,損失函數(loss function)為交叉熵(cross entropy)損失函數。對於樣本點(x,y)來說,y是真實的標簽,在多分類問題中,其取值只可能為標簽集合labels. 我們假設有K個標簽值,且第i個樣本預測為第k個標簽值的概率為\(p_{i ...
為什么交叉熵損失更適合分類問題 作者:飛魚Talk 鏈接:https://zhuanlan.zhihu.com/p/35709485 來源:知乎 著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請注明出處。 Cross Entropy Error Function(交叉熵損失函數 ...
二分類問題的交叉熵 在二分類問題中,損失函數(loss function)為交叉熵(cross entropy)損失函數。對於樣本點(x,y)來說,y是真實的標簽,在二分類問題中,其取值只可能為集合{0, 1}. 我們假設某個樣本點的真實標簽為yt, 該樣本點取yt=1的概率為yp ...
這篇寫的比較詳細: from: https://zhuanlan.zhihu.com/p/35709485 這篇文章中,討論的Cross Entropy損失函數常用於分類問題中,但是為什么它會在分類問題中這么有效呢?我們先從一個簡單的分類例子來入手。 1. 圖像分類任務 我們希望根據圖片 ...
sparsecategoricalcrossentropy,和,SparseCategoricalCrossentropy,用法,區別 這兩個函數的功能都是將數字編碼轉化成one-hot編碼格式,然后對one-hot編碼格式的數據(真實標簽值)與預測出的標簽值使用交叉熵損失函數。 先看一下官網 ...
准備1、先說一下什么是logit,logit函數定義為: 是一種將取值范圍在[0,1]內的概率映射到實數域[-inf,inf]的函數,如果p=0.5,函數值為0;p<0.5,函數值為負;p>0.5,函數值為正。 相對地,softmax和sigmoid則都是將[-inf,inf ...