1.前向傳播: 一般的我們有top[0]來存放數據,top[1]來存放標簽(對於bottom也一樣) 2.反向傳播: 解釋: 補充:最后部分,Zi!=Zj和Zi=Zj部分寫反了,大家注意一下~ ...
一 前向傳播 在caffe中,卷積層做卷積的過程被轉化成了由卷積核的參數組成的權重矩陣weights 簡記為W 和feature map中的元素組成的輸入矩陣 簡記為Cin 的矩陣乘積W Cin。在進行乘積之前,需要對卷積核的參數和feature map作處理,以得到W和Cin。 下面用一個例子來說名上述兩個過程。假設某一卷積層輸入為c X h X w X X 的feature map,卷積核大小 ...
2018-03-13 22:26 0 1809 推薦指數:
1.前向傳播: 一般的我們有top[0]來存放數據,top[1]來存放標簽(對於bottom也一樣) 2.反向傳播: 解釋: 補充:最后部分,Zi!=Zj和Zi=Zj部分寫反了,大家注意一下~ ...
在深度學習中,前向傳播與反向傳播是很重要的概念,因此我們需要對前向傳播與反向傳播有更加深刻的理解,假設這里有一個三層的神經網絡 在這里,上面一排表示的是前向傳播,后面一排表示的是反向傳播,在前向傳播的情況每一層將通過一層激活函數去線性化,並且在前向傳播的過程中會緩存z[l],最終輸出y ...
前向傳播 通過輸入樣本x及參數\(w^{[1]}\)、\(b^{[1]}\)到隱藏層,求得\(z^{[1]}\),進而求得\(a^{[1]}\); 再將參數\(w^{[2]}\)、\(b^{[2]}\)和\(a^{[1]}\)一起輸入輸出層求得\(z^{[2]}\),進而求得 ...
前向傳播和反向傳播( Forward and backward propagation) 前向傳播 假設輸入${a^{[l - 1]}}$,輸出${a^{[l]}}$,緩存${z^{[l]}}$,從實現的角度來說緩存${w^{[l]}}$,${b^{[l]}}$更容易在不同的環節調用函數 ...
神經網絡最基本的知識可以參考神經網絡基本知識,基本的東西說的很好了,然后這里講一下神經網絡中的參數的求解方法。 注意前一次的各單元不需要與后一層的偏置節點連線,因為偏置節點不需要有輸入也不需要sigmoid函數得到激活值,或者認為激活值始終是1. 一些變量解釋: 標上“”的圓圈被稱為 ...
前面在mnist中使用了三個非線性層來增加模型復雜度,並通過最小化損失函數來更新參數,下面實用最底層的方式即張量進行前向傳播(暫不采用層的概念)。 主要注意點如下: · 進行梯度運算時,tensorflow只對tf.Variable類型的變量進行記錄,而不對tf.Tensor或者其他類型 ...
神經網絡 神經網絡可以理解為一個輸入x到輸出y的映射函數,即f(x)=y,其中這個映射f就是我們所要訓練的網絡參數w,我們只要訓練出來了參數w,那么對於任何輸入x,我們就能得到一個與之對應的輸出y。 ...
[源碼解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向傳播 目錄 [源碼解析] PyTorch 分布式(13) ----- DistributedDataParallel 之 反向傳播 0x00 ...