1.前向傳播:
template <typename Dtype> void SoftmaxLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { const Dtype* bottom_data = bottom[0]->cpu_data(); Dtype* top_data = top[0]->mutable_cpu_data(); Dtype* scale_data = scale_.mutable_cpu_data(); int channels = bottom[0]->shape(softmax_axis_); int dim = bottom[0]->count() / outer_num_; //dim表示要分類的類別數,count()得到的是總共的輸入Blob數,outer_num_得到的是是每一類的Blob數 caffe_copy(bottom[0]->count(), bottom_data, top_data); //先將輸入拷貝到輸出緩沖區 // We need to subtract the max to avoid numerical issues, compute the exp, // and then normalize,減去最大值,避免數值問題,計算指數,歸一化 for (int i = 0; i < outer_num_; ++i) { // 初始化scale_的data域為第一個平面,其中scale用來存放臨時計算結果 caffe_copy(inner_num_, bottom_data + i * dim, scale_data); for (int j = 0; j < channels; j++) { for (int k = 0; k < inner_num_; k++) { scale_data[k] = std::max(scale_data[k], bottom_data[i * dim + j * inner_num_ + k]); } } // 輸出緩沖區減去最大值 caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., top_data); // exponentiation caffe_exp<Dtype>(dim, top_data, top_data); // sum after exp caffe_cpu_gemv<Dtype>(CblasTrans, channels, inner_num_, 1., top_data, sum_multiplier_.cpu_data(), 0., scale_data); // division for (int j = 0; j < channels; j++) { caffe_div(inner_num_, top_data, scale_data, top_data); top_data += inner_num_; } } }
一般的我們有top[0]來存放數據,top[1]來存放標簽(對於bottom也一樣)
2.反向傳播:
template <typename Dtype> void SoftmaxLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { const Dtype* top_diff = top[0]->cpu_diff(); const Dtype* top_data = top[0]->cpu_data(); Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); Dtype* scale_data = scale_.mutable_cpu_data(); int channels = top[0]->shape(softmax_axis_); int dim = top[0]->count() / outer_num_; caffe_copy(top[0]->count(), top_diff, bottom_diff); //先用top_diff初始化bottom_diff for (int i = 0; i < outer_num_; ++i) { // 計算top_diff和top_data的點積,然后從bottom_diff中減去該值 for (int k = 0; k < inner_num_; ++k) { scale_data[k] = caffe_cpu_strided_dot<Dtype>(channels, bottom_diff + i * dim + k, inner_num_, top_data + i * dim + k, inner_num_); } // 減值 caffe_cpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, channels, inner_num_, 1, -1., sum_multiplier_.cpu_data(), scale_data, 1., bottom_diff + i * dim); } // 逐點相乘 caffe_mul(top[0]->count(), bottom_diff, top_data, bottom_diff); }
解釋:
補充:最后部分,Zi!=Zj和Zi=Zj部分寫反了,大家注意一下~