功能: 將文件夾下的20*20像素黑白圖片,根據重心位置繪制到28*28圖片上,然后保存。經過預處理的圖片有利於數字的准確識別。參見MNIST對圖片的要求。 此處可下載已處理好的圖片: https://files.cnblogs.com/files ...
折騰了幾天,爬了大大小小若干的坑,特記錄如下。代碼在最后面。 環境: 方法: 調試代碼: 坑 :ModuleNotFoundError: No module named google 解決:pip install protobuf 不用翻牆 坑 :ModuleNotFoundError: No module named absl 解決:pip install absl py 坑 :tensorf ...
2018-03-05 13:09 1 8540 推薦指數:
功能: 將文件夾下的20*20像素黑白圖片,根據重心位置繪制到28*28圖片上,然后保存。經過預處理的圖片有利於數字的准確識別。參見MNIST對圖片的要求。 此處可下載已處理好的圖片: https://files.cnblogs.com/files ...
導入依賴 下載數據集 mnist數據集是一個公共的手寫數字數據集,一共有7W張28*28像素點的0-9手寫數字圖片和標簽,其中有6W張是訓練集,1W張是測試集。 其中,x_train為訓練集特征,y_train為訓練集標簽,x_test為測試集特征 ...
上代碼: 打開cmd,進入當前文件夾,執行tensorboard --logdir='C:\Users\FELIX\Desktop\tensor學習\logs' 就可以進入tenso ...
一、構建模型 二、預測結果 可以看到,5個epoch后准確率已經非常高,通過非卷積網絡訓練模型的准確率低於卷積網絡,讀者可以自行試驗 參考: https://tensorflow.google.cn/tutorials ...
首先,關於神經網絡,其實是一個結合很多知識點的一個算法,關於cnn(卷積神經網絡)大家需要了解: 下面給出我之前總結的這兩個知識點(基於吳恩達的機器學習) 代價函數: 代價函數 代價函數(Cost ...
一、介紹 實驗內容 內容包括用 PyTorch 來實現一個卷積神經網絡,從而實現手寫數字識別任務。 除此之外,還對卷積神經網絡的卷積核、特征圖等進行了分析,引出了過濾器的概念,並簡單示了卷積神經網絡的工作原理。 知識點 使用 PyTorch 數據集三件套的方法 卷積神經網絡 ...
這篇文章中,我們將使用CNN構建一個Tensorflow.js模型來分辨手寫的數字。首先,我們通過使之“查看”數以千計的數字圖片以及他們對應的標識來訓練分辨器。然后我們再通過此模型從未“見到”過的測試數據評估這個分辨器的精確度。 一、運行代碼 這篇文章的全部代碼可以在倉庫 ...