1 池化層(Pooling layers) 除了卷積層,卷積網絡也經常使用池化層來縮減模型的大小,提高計算速度,同時提高所提取特征的魯棒性。假如輸入是一個 4×4 矩陣,用到的池化類型是最大池化(max pooling),執行最大池化的樹池是一個 2×2 矩陣,即f=2,步幅是 2,即s ...
后向傳播的實現還是沒有頭緒,三層之間如何銜接不知道該怎么設計。本人能力水平有限,歡迎交流。本人微信號 markli ...
2018-03-05 10:36 0 1745 推薦指數:
1 池化層(Pooling layers) 除了卷積層,卷積網絡也經常使用池化層來縮減模型的大小,提高計算速度,同時提高所提取特征的魯棒性。假如輸入是一個 4×4 矩陣,用到的池化類型是最大池化(max pooling),執行最大池化的樹池是一個 2×2 矩陣,即f=2,步幅是 2,即s ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
/details/70198357 卷積神經網絡(CNN)由輸入層、卷 ...
2020-09-21 參考 1 、 2 、 卷積神經網絡(CNN)由輸入層、卷積層、激活函數、池化層、全連接層組成,即INPUT(輸入層)-CONV(卷積層)-RELU(激活函數)-POOL(池化層)-FC(全連接層) 卷積層 用它來進行特征提取,如下: 輸入 ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
一、全連接層 tensorflow中用tf.keras.layers.Dense()這個類作為全連接的隱藏層,下面是參數介紹: tf.keras.layers.Dense() inputs = 64, # 輸入該網絡層的數據 units = 10, # 輸出的維度大小 ...
卷積神經網絡(CNN)由輸入層、卷積層、激活函數、池化層、全連接層組成,即INPUT-CONV-RELU-POOL-FC (1)卷積層:用它來進行特征提取,如下: 輸入圖像是32*32*3,3是它的深度(即R、G、B),卷積層是一個5*5*3的filter(感受野),這里注意:感受野的深度 ...
卷積神經網絡中卷積層和池化層 https://www.cnblogs.com/wj-1314/p/9593364.html 為什么要使用卷積呢? 在傳統的神經網絡中,比如多層感知機(MLP),其輸入通常是一個特征向量,需要人工設計特征,然后將這些特征計算的值組成特征向量,在過去幾十年的經驗 ...