以下是摘抄自知乎上對監督學習與非監督學習的總結,覺得寫得很形象,於是記下: 這個問題可以回答得很簡單:是否有監督(supervised),就看輸入數據是否有標簽(label)。輸入數據有標簽,則為有監督學習,沒標簽則為無監督學習首 先看什么是學習(learning)?一個成語就可概括:舉一反三 ...
最近在學習半監督學習方面的內容,一開始便遇到了這么幾個概念:主動學習 active learning 半監督學習 semi supervised learning 和直推學習 transductive learning 。想必剛開始大家都覺得有點迷糊,下面就讓我來詳細把它們之間的聯系與區別講述一下,相信讀完大家一定會思路清晰,至少在概念上不會再搞錯了。 什么是主動學習 主動學習指的是這樣一種學習 ...
2017-12-26 16:53 0 4449 推薦指數:
以下是摘抄自知乎上對監督學習與非監督學習的總結,覺得寫得很形象,於是記下: 這個問題可以回答得很簡單:是否有監督(supervised),就看輸入數據是否有標簽(label)。輸入數據有標簽,則為有監督學習,沒標簽則為無監督學習首 先看什么是學習(learning)?一個成語就可概括:舉一反三 ...
在機器學習中,監督學習和非監督學習算法是非常重要的,但是二者應該如何區分開來呢? 要向對二者進行區分,首先就要對訓練的數據進行檢查,看一下訓練數據中是否有標簽,這是二者最根本的區別。監督學習的數據既有特征又有標簽,而非監督學習的數據中只有特征而沒有標簽。 監督學習是通過訓練讓機器自己找到特征 ...
機器學習分為:監督學習,無監督學習,半監督學習(也可以用hinton所說的強化學習)等。 監督與無監督區別: 1. 有監督學習方法必須要有訓練集與測試樣本。在訓練集中找規律,而對測試樣本使用這種規律。而非監督學習沒有訓練集,只有一組數據,在該組數據集內尋找規律。 2. ...
有監督學習和無監督學習兩者的區別: 1.有標簽就是有監督學習,沒有標簽就是無監督學習,說的詳細一點,有監督學習的目的是在訓練集中找規律,然后對測試數據運用這種規律,而無監督學習沒有訓練集,只有一組數據,在該組數據集內尋找規律。 2. 無監督學習方法在尋找數據集中的規律性,這種規律性並不一定 ...
監督學習: 監督學習是目前最主流的學習方式,其特點是:訓練過程中樣本都是有標簽的。 常見的監督學習任務有:分類、回歸、序列標注等。 學習步驟大致可以分為三步(以SVM為例): 1) 在有監督數據上訓練,學的一個判別器W; 2)然后在測試集(故意把標簽P抹去)上,用上 ...
監督式學習:全部使用含有標簽的數據來訓練分類器。 無監督式學習:具有數據集但無標簽(即聚類)。 半監督學習:使用大量含有標簽的數據和少量不含標簽的數據進行訓練分類或者聚類。 半監督學習:純半監督學習和直推式學習 純半監督學習和直推式學習的區別: 半監督學習在學習使並不知道最終 ...
轉自:https://zhuanlan.zhihu.com/p/108906502 1. 什么是自監督學習? 自監督學習主要是利用輔助任務(pretext)從大規模的無監督數據中挖掘自身的監督信息,通過這種構造的監督信息對網絡進行訓練,從而可以學習到對下游任務有價值的表征。 2.如何評測 ...
1 監督學習 利用一組帶標簽的數據, 學習從輸入到輸出的映射, 然后將這種映射關系應用到未知數據, 達到分類或者回歸的目的 (1) 分類: 當輸出是離散的, 學習任務為分類任務 輸入: 一組有標簽的訓練數據(也叫觀察和評估), 標簽表明了這些數據(觀察)的所屬類別 ...