tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介紹參數: input:指卷積需要輸入的參數,具有這樣的shape[batch, in_height, in_width ...
這個地方一開始是迷糊的,寫代碼做比較分析,總結出直覺上的經驗 某人若想看精准的解釋,移步這個網址 http: blog.csdn.net fireflychh article details ,但我覺得直覺上的經驗更有用,如下: 直覺上的經驗: 一件確定的事: padding 無論取 SAME 還是取 VALID , 它在 conv d 和 max pool 上的表現是一致的 padding SA ...
2017-12-13 22:31 0 3407 推薦指數:
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介紹參數: input:指卷積需要輸入的參數,具有這樣的shape[batch, in_height, in_width ...
轉自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是這位博主自己的翻譯加上測試心得 tf.nn.conv2d是TensorFlow里面實現卷積的函數,參考文檔對它的介紹並不是很詳細,實際上這是搭建卷積神經網絡比較核心的一個方法 ...
摘要:池化層的主要目的是降維,通過濾波器映射區域內取最大值、平均值等操作。 均值池化:tf.nn.avg_pool(input,ksize,strides,padding) 最大池化:tf.nn.max_pool(input,ksize,strides,padding) input ...
tf.nn.conv2d是TensorFlow里面實現卷積的函數,參考文檔對它的介紹並不是很詳細,實際上這是搭建卷積神經網絡比較核心的一個方法,非常重要 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None ...
方法定義 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1,1,1,1], name=None) 參數: input: 輸入的要做 ...
下面是二維卷積函數的樣例和解釋,一維或更高維的卷積函數與之類似 1、tf.nn.conv2d 關鍵參數如下 input.shape=[batch, in_height, in_width, in_channels] filter.shape= [filter_height ...
input:輸入數據 filter:過濾器 strides:卷積滑動步長,實際上可以解釋為過濾器的大小 padding:圖像邊填充方式 ...