一、make_blobs簡介 scikit中的make_blobs方法常被用來生成聚類算法的測試數據,直觀地說,make_blobs會根據用戶指定的特征數量、中心點數量、范圍等來生成幾類數據,這些數據可用於測試聚類算法的效果。 二、函數原型 ...
sklearn.datasets.make blobs n samples , n features , centers , cluster std . , center box . , . , shuffle True, random state None 屬性含義: n samples: int, optional default The total number of points equa ...
2017-12-09 15:40 0 8264 推薦指數:
一、make_blobs簡介 scikit中的make_blobs方法常被用來生成聚類算法的測試數據,直觀地說,make_blobs會根據用戶指定的特征數量、中心點數量、范圍等來生成幾類數據,這些數據可用於測試聚類算法的效果。 二、函數原型 ...
make_blobs方法: sklearn.datasets.make_blobs(n_samples=100,n_features=2,centers=3, cluster_std=1.0,center_box=(-10.0,10.0),shuffle=True,random_state ...
sklearn.datasets.make_blobs() 是用於創建多類單標簽數據集的函數,它為每個類分配一個或多個正態分布的點集。 參數的英文含義: View Code 返回值 X : array of shape [n_samples ...
一、介紹 scikit-learn 包含各種隨機樣本的生成器,可以用來建立可控制大小和復雜性的人工數據集。 make_blob() —— 聚類生成器 make_classification() —— 單標簽分類生成器 make ...
make_blobs會根據用戶指定的特征數量、中心點數量、范圍等來生成幾類數據,這些數據可用於測試聚類算法的效果。 n_samples是待生成的樣本數量,n_features是每個樣本的特征數,centers是簇數量,也可以直接指定每個簇的中心點centers=[[-1,1 ...
參考:https://scikit-learn.org/dev/modules/generated/sklearn.datasets.make_blobs.html 函數原型:sklearn.datasets.make_blobs(n_samples=100, n_features ...
/52622960 【scikit-learn】01:使用案例對sk ...
make_moons是函數用來生成數據集,在sklearn.datasets里,具體用法如下: 主要參數作用如下:n_numbers:生成樣本數量shuffle:是否打亂,類似於將數據集random一下noise:默認是false,數據集是否加入高斯噪聲random_state ...