make_moons
是函數用來生成數據集,在sklearn.datasets
里,具體用法如下:
Parameters: n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. random_state : int, RandomState instance or None (default) Determines random number generation for dataset shuffling and noise. Pass an int for reproducible output across multiple function calls. See Glossary. Returns: X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample.
主要參數作用如下:
n_numbers:生成樣本數量
shuffle:是否打亂,類似於將數據集random一下
noise:默認是false,數據集是否加入高斯噪聲
random_state:生成隨機種子,給定一個int型數據,能夠保證每次生成數據相同。
sklearn.datasets.make_moons(n_samples=100, shuffle=True, noise=None, random_state=None)
for example:
X, y = datasets.make_moons(500, noise=0.5)
參考文獻:
【1】https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html
————————————————
版權聲明:本文為CSDN博主「禪心001」的原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/woai8339/article/details/88628509