聲明:原創內容,如需轉載請注明出處 今天講解的內容是: 信息增益比,決策樹的生成算法—ID3和C4.5 我們昨天已經學習了什么是信息增益,並且通過信息增益來選擇最優特征,但是用信息增益會出現偏向於選擇取值多的特征。 來解釋下這句話。以最極端的情況舉例,比如有 ...
關於決策樹,想必大部分人都已經耳熟能詳了,這是一種用來預測行為的樹狀分叉結構。本文主要想總結一下最常用的決策樹生成算法 構造的原則 熟悉決策樹的你一定記得,決策樹每個非葉子結點對應的其實是一個屬性。比方說,想判斷一個男生是不是 gay,我們首先需要判斷他的性別是不是男的,是的話繼續判斷他的性取向,之后繼續判斷他的其他行為 這里的 性別 , 性取向 就是屬性,而決策樹的生成其實是依次挑選這些屬性組成 ...
2017-12-05 10:48 0 4226 推薦指數:
聲明:原創內容,如需轉載請注明出處 今天講解的內容是: 信息增益比,決策樹的生成算法—ID3和C4.5 我們昨天已經學習了什么是信息增益,並且通過信息增益來選擇最優特征,但是用信息增益會出現偏向於選擇取值多的特征。 來解釋下這句話。以最極端的情況舉例,比如有 ...
一、ID3算法 ID3算法的核心是在決策樹各個結點上應用信息增益准則選擇特征,遞歸地構建決策樹。具體方法是:從根結點(root node)開始,對結點計算所有可能的特征的信息增益,選擇信息增益最大的特征作為結點的特征,由該特征的不同取值建立子結點;再對子結點遞歸地調用以上方法,構建 ...
1. 決策樹算法 1.1 背景知識 信息量\(I(X)\):指一個樣本/事件所蘊含的信息,如果一個事情的概率越大,那么就認為該事件所蘊含的信息越少,確定事件不攜帶任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用來描述系統信息量 ...
算法思想 決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。 其每個非葉節點表示一個特征屬性上的測試,每個分支代表這個特征屬性在某個值域上的輸出,而每個葉節點存放一個類別。 使用決策樹進行決策的過程就是從根節點開始,測試待分類項中相應的特征屬性,並按照其值選擇輸出 ...
利用ID3算法來判斷某天是否適合打網球。 (1)類別屬性信息熵的計算由於未分區前,訓練數據集中共有14個實例, 其中有9個實例屬於yes類(適合打網球的),5個實例屬於no類(不適合打網球), 因此分區前類別屬性的熵為: (2)非類別屬性信息熵 ...
系數)計算不同特征的指標值,選出最佳的特征作為分裂節點。 生成決策樹:不斷的重復分裂特征選擇,並從上 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、簡介 決策樹思想的來源非常朴素,程序設計中的條件分支結構就是if-else結構,最早的決策樹就是利用這類結構分割數據的一種分類學習方法 1.定義: 決策樹是一種樹形結構,其中每個內部節點表示一個 ...
決策樹算法是一種通用的機器學習算法,既可以執行分類也可以執行回歸任務,同時也是一種可以擬合復雜數據集的功能強大的算法; 一、可視化決策樹模型 通過以下代碼,我們使用iris數據集構建一個決策樹模型,我們使用數據的后兩個維度並設置決策樹的最大深度為2,最后通過export ...