一:基礎知識 1:個體信息量 -long2pi 2:平均信息量(熵) Info(D)=-Σi=1...n(pilog2pi) 比如我們將一個立方體A拋向空中,記落地時着地的面為f1,f1的取值為{1,2,3,4,5,6},f1的熵entropy(f1)=-(1/6*log ...
上數據挖掘課的時候算過GINI指數,在尋找降維算法的時候突然看到了信息增益算法,突然發現信息增益算法和課上算的GINI指數很相似,於是就用在這次文本分類實驗當中。總的來說信息增益算法是為了求特征t對於分類的貢獻大小。貢獻大則稱信息增益大 貢獻小信息增益小。文本分類自然是找那些對分類貢獻大的詞匯了。。。 在信息增益算法當中關鍵要求的是條件熵,即固定特征t之后系統的熵,公式如下 代碼如下 ...
2018-01-30 08:45 0 1141 推薦指數:
一:基礎知識 1:個體信息量 -long2pi 2:平均信息量(熵) Info(D)=-Σi=1...n(pilog2pi) 比如我們將一個立方體A拋向空中,記落地時着地的面為f1,f1的取值為{1,2,3,4,5,6},f1的熵entropy(f1)=-(1/6*log ...
1. 算法背景介紹 分類樹(決策樹)是一種十分常用的分類方法。他是一種監管學習,所謂監管學習說白了很簡單,就是給定一堆樣本,每個樣本都有一組屬性和一個類別,這些類別是事先確定的,那么通過學習得到一個分類器,這個分類器能夠對新出現的對象給出正確的分類。這樣的機器學習就被稱之為監督學習。分類本質上 ...
這是一個計算決策樹中信息增益、信息增益比和GINI指標的例子。 相關閱讀: Information Gainhttp://www.cs.csi.cuny.edu/~imberman/ai/Entropy%20and%20Information%20Gain.htm ...
ID3、C4.5和CART三種經典的決策樹模型分別使用了信息增益、信息增益比和基尼指數作為選擇最優的划分屬性的准則來構建決策樹。以分類樹來說,構建決策樹的過程就是從根節點(整個數據集)向下進行節點分裂(划分數據子集)的過程,每次划分需要讓分裂后的每個子集內部盡可能包含同一類樣本。信息增益和信息增益 ...
信息增益是隨機森林算法里面的一個很重要的算法,因為我們在選擇節點的特征項的時候,就要通過信息增益或者是信息增益率來選擇。這里先理解信息增益。 什么是信息增益呢?信息增益(Kullback–Leibler divergence)又稱information divergence ...
離散特征信息增益計算 數據來自《.統計學習方法——李航》5.2.1節中貸款申請樣本數據表 利用pandas的value_counts(),快速計算 refference:python詳細步驟計算信息增益 ...
1.信息熵:信息熵就是指不確定性,熵越大,不確定性越大 2.關於信息增益: 信息增益是針對一個一個的特征而言的,就是看一個特征t,系統有它和沒它的時候信息量各是多少,兩者的差值就是這個特征給系統帶來的信息量,即增益。系統含有特征t的時候信息量很好計算,就是剛才的式子,它表示的是包含 ...
決策樹入門 決策樹是分類算法中最重要的算法,重點 決策樹算法在電信營業中怎么工作? 這個工人也是流失的,在外網轉移比處雖然沒有特征來判斷,但是在此節點處流失率有三個分支概率更大 為什么叫決策樹? 因為樹的葉子節點是我們最終預判的結果。決策樹如何來? 根據訓練樣本建立 ...