原文:28-決策樹算法——簡單有效的概率模型

白天太陽升起,總是給人希望,無盡的黑夜往往讓人無助。魯迅說:黑暗中的一點光亮給人以溫暖,然而正因為光亮之有限,反襯出周圍更加廣袤的黑暗,又帶給人新的絕望。生活總在希望和失望之間交錯前行,當黑暗來臨時,我們或許可如螢火般,在黑暗里發一點光,而不必等候炬火 天氣越冷,雞湯越暖,你懂的 。 今天學習機器學習算法中的決策樹,是一種簡單高效並且具有強解釋性的模型,廣泛應用於數據分析領域。其本質是一顆由多個判 ...

2017-11-12 21:13 0 3299 推薦指數:

查看詳情

決策樹模型

決策樹的目標是從一組樣本數據中,根據不同的特征和屬性,建立一棵樹形的分類結構。 決策樹的學習本質上是從訓練集中歸納出一組分類規則,得到與數據集矛盾較小的決策樹,同時具有很好的泛化能力。決策樹學習的損失函數通常是正則化的極大似然函數,通常采用啟發式方法,近似求解這一最優化問題。 算法原理 ...

Sat May 18 03:16:00 CST 2019 0 1504
決策樹算法簡單總結

評估 決策樹最優模型的構建步驟 決策樹的優缺點分析 a. 決策樹不確定性的度量方法 ...

Mon Jan 07 00:29:00 CST 2019 0 829
決策樹模型

看到一篇關於決策樹比較好的文章,轉錄過來,內容如下: 決策樹 決策樹里面最重要的就是節點和分裂條件,直接決定了一棵的好壞。用一個簡單的例子先說明一下: 來一段情景對話: 母親:女兒,你也不小了,還沒對象!媽很揪心啊,這不托人給你找了個對象,明兒去見個面吧! 女兒:年紀 ...

Wed Dec 11 02:46:00 CST 2019 0 1651
決策樹算法

1. 決策樹算法 1.1 背景知識 信息量\(I(X)\):指一個樣本/事件所蘊含的信息,如果一個事情的概率越大,那么就認為該事件所蘊含的信息越少,確定事件不攜帶任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用來描述系統信息量 ...

Thu Jul 18 06:42:00 CST 2019 0 414
決策樹算法

算法思想 決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。 其每個非葉節點表示一個特征屬性上的測試,每個分支代表這個特征屬性在某個值域上的輸出,而每個葉節點存放一個類別。 使用決策樹進行決策的過程就是從根節點開始,測試待分類項中相應的特征屬性,並按照其值選擇輸出 ...

Tue Jul 10 00:38:00 CST 2018 0 12904
決策樹算法

利用ID3算法來判斷某天是否適合打網球。 (1)類別屬性信息熵的計算由於未分區前,訓練數據集中共有14個實例, 其中有9個實例屬於yes類(適合打網球的),5個實例屬於no類(不適合打網球), 因此分區前類別屬性的熵為: (2)非類別屬性信息熵 ...

Sun Apr 23 07:04:00 CST 2017 0 5437
決策樹算法

###決策樹基礎概念 在機器學習中,決策樹是一個預測模型,他代表的是對象屬性與對象值之間的一種映射關系。Entropy (熵) 表示的是系統的凌亂程度,它是決策樹決策依據,熵的概念來源於香儂的信息論。 ###決策樹決策過程 選擇分裂特征:根據某一指標(信息增益,信息增益比或基尼 ...

Sun Jan 15 22:49:00 CST 2017 0 7039
決策樹算法

Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、簡介 決策樹思想的來源非常朴素,程序設計中的條件分支結構就是if-else結構,最早的決策樹就是利用這類結構分割數據的一種分類學習方法 1.定義: 決策樹是一種樹形結構,其中每個內部節點表示一個 ...

Fri Aug 30 23:30:00 CST 2019 0 609
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM