原文:【深度學習系列】卷積神經網絡詳解(二)——自己手寫一個卷積神經網絡

上篇文章中我們講解了卷積神經網絡的基本原理,包括幾個基本層的定義 運算規則等。本文主要寫卷積神經網絡如何進行一次完整的訓練,包括前向傳播和反向傳播,並自己手寫一個卷積神經網絡。如果不了解基本原理的,可以先看看上篇文章: 深度學習系列 卷積神經網絡CNN原理詳解 一 基本原理 卷積神經網絡的前向傳播 首先我們來看一個最簡單的卷積神經網絡: .輸入層 gt 卷積層 以上一節的例子為例,輸入是一個 的 ...

2017-11-22 17:20 71 53230 推薦指數:

查看詳情

CNN 卷積神經網絡 手寫數字 圖像識別 (深度學習

@ 目錄 ✌ 卷積神經網絡手寫數字圖像識別 1、✌ 導入相關庫 2、✌ 導入手寫數據集 3、✌ 定義數據包裝器 4、✌ 查看數據維度 5、✌ 定義卷積網絡層 6、✌ 定義模型與損失函數、優化器 7、✌ 訓練 ...

Wed Apr 28 05:11:00 CST 2021 0 257
手寫數字圖片識別-卷積神經網絡

導入依賴 下載數據集 mnist數據集是一個公共的手寫數字數據集,一共有7W張28*28像素點的0-9手寫數字圖片和標簽,其中有6W張是訓練集,1W張是測試集。 其中,x_train為訓練集特征,y_train為訓練集標簽,x_test為測試集特征 ...

Mon Nov 09 16:55:00 CST 2020 0 806
深度學習卷積神經網絡

,結點,單元,像素點,patch 局部感受野的大小 = 濾波器的大小 1、 引入   在人工神經網絡 ...

Mon Jul 20 05:17:00 CST 2015 2 8049
深度卷積神經網絡學習筆記(一)

1.卷積操作實質: 輸入圖像(input volume),在深度方向上由很多slice組成,對於其中一個slice,可以對應很多神經元,神經元的weight表現為卷積核的形式,即一個方形的濾波器(filter)(如3X3),這些神經元各自分別對應圖像中的某一個局部區域(local ...

Sun Jul 31 05:20:00 CST 2016 0 23613
深度學習——卷積神經網絡入門

傳統神經網絡:   是全連接形式,即樣本的每個特征屬性都通過所有的隱藏層節點映射,最后輸出數據。由於是全連接,所以計算極為復雜,且模型不易學習卷積神經網絡卷積神經網絡(Convolutional Neural Networks, CNN), CNN可以有效的降低反饋神經網絡(傳統神經網絡 ...

Wed Feb 05 23:10:00 CST 2020 0 719
深度學習之 TensorFlow(四):卷積神經網絡

基礎概念:   卷積神經網絡(CNN):屬於人工神經網絡的一種,它的權值共享的網絡結構顯著降低了模型的復雜度,減少了權值的數量。卷積神經網絡不像傳統的識別算法一樣,需要對數據進行特征提取和數據重建,可以直接將圖片作為網絡的輸入,自動提取特征,並且對圖形的變形等具有高度不變形。在語音分析和圖像識別 ...

Thu May 10 05:14:00 CST 2018 2 1651
深度學習卷積神經網絡(CNN)

卷積神經網絡(CNN)因為在圖像識別任務中大放異彩,而廣為人知,近幾年卷積神經網絡在文本處理中也有了比較好的應用。我用TextCnn來做文本分類的任務,相比TextRnn,訓練速度要快非常多,准確性也比較高。TextRnn訓練慢得像蝸牛(可能是我太沒有耐心),以至於我直接中斷了訓練,到現在我已經 ...

Sun Apr 14 05:21:00 CST 2019 3 590
深度學習三:卷積神經網絡

運算來代替一般的矩陣乘法的神經網絡卷積神經網絡的出現,極大的緩解了全連接神經網絡中存在的一個典型的 ...

Sat Oct 03 06:03:00 CST 2020 0 4143
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM