參考:https://blog.csdn.net/b1055077005/article/details/100152102 (文中所有公式均來自該bolg,侵刪) 信息奠基人香農(Shannon) ...
一. 信息論背景 信息論的研究內容,是對一個信號包含信息的多少進行量化。所采用的量化指標最好滿足兩個條件: 越不可能發生的事件包含的信息量越大 獨立事件有增量的信息 就是幾個獨立事件同時發生的信息量等於每一個信息量的和 。 遵循以上原則,定義一個事件 mathsf x x 的自信息為: I x log p x log底為e時,單位為nats 底為 時,單位為比特或香農。 用香農熵 Shannon ...
2017-10-29 16:07 0 3547 推薦指數:
參考:https://blog.csdn.net/b1055077005/article/details/100152102 (文中所有公式均來自該bolg,侵刪) 信息奠基人香農(Shannon) ...
熵、交叉熵、KL散度、JS散度 一、信息量 事件發生的可能性大,信息量少;事件發生的可能性小,其信息量大。 即一條信息的信息量大小和它的不確定性有直接的關系,比如說現在在下雨,然后有個憨憨跟你說今天有雨,這對你了解獲取天氣的信息沒有任何用處。但是有人跟你說明天可能也下雨,這條信息就比前一條 ...
用的交叉熵(cross entropy)損失,並從信息論和貝葉斯兩種視角闡釋交叉熵損失的內涵。 # ...
機器學習的面試題中經常會被問到交叉熵(cross entropy)和最大似然估計(MLE)或者KL散度有什么關系,查了一些資料發現優化這3個東西其實是等價的。 熵和交叉熵 提到交叉熵就需要了解下信息論中熵的定義。信息論認為: 確定的事件沒有信息,隨機事件包含最多的信息。 事件信息 ...
KL散度、JS散度和交叉熵三者都是用來衡量兩個概率分布之間的差異性的指標 1. KL散度 KL散度又稱為相對熵,信息散度,信息增益。KL散度是是兩個概率分布 P">P 和 Q">Q (概率分布P(x)和Q(x)) 之間差別的非對稱性的度量。 KL散度是用來 度量使用基於 Q">Q 的編碼 ...
一、信息熵 若一個離散隨機變量 \(X\) 的可能取值為 \(X = \{ x_{1}, x_{2},...,x_{n}\}\),且對應的概率為: \[p(x_{i}) = p(X=x_{i}) \] 那么隨機變量 \(X\) 的熵定義為: \[H(X) = -\sum_{i ...
交叉熵可在神經網絡(機器學習)中作為損失函數,p表示真實標記的分布,q則為訓練后的模型的預測標記分布,交叉熵損失函數可以衡量真實分布p與當前訓練得到的概率分布q有多么大的差異。 相對熵(relative entropy)就是KL散度(Kullback–Leibler ...
相對熵(relative entropy)就是KL散度(Kullback–Leibler divergence),用於衡量兩個概率分布之間的差異。 一句話總結的話:KL散度可以被用於計算代價,而在特定情況下最小化KL散度等價於最小化交叉熵。而交叉熵的運算更簡單,所以用交叉熵來當做代價 ...